
trees
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are lists enough?

for correctness — sure

want to efficiently access items
better than linear time to find something

want to represent relationships more naturally

2



inter-item relationships in lists

1 2 3 4 5

List: nodes related to predecessor/successor
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trees

trees: allow representing more relationships
(but not arbitrary relationships — see graphs later in semester)

restriction: single path from root to every node
implies single path from every node to every other node (possibly
through root)
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natural trees: phylogenetic tree

image: Ivicia Letunic and Mariana Ruiz Villarreal, via the tool iTOL (Interative Tree of Life), via Wikipedia 5



natural trees: phylogenetic tree (zoom)

image: Ivicia Letunic and Mariana Ruiz Villarreal, via the tool iTOL (Interative Tree of Life), via Wikipedia 6



natural trees: Indo-European languages
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list to tree

predecessor element successor

list — up to 2 related nodes

parent

element

left child left child

binary tree — up to 3 related nodes (list is special-case)
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more general trees

parent

element

child 1 child 2 child n…

tree — any number of relationships (binary tree is special case)
at most one parent
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tree terms (1)

A

B C

E F GD

H

parent child
root: node with no parents

leafs: nodes with no children

siblings: nodes with the same parent

10



paths and path lengths

A

B C

E F GD

H

path: sequence of nodes n1, n2, . . . , nk

such that ni is parent of ni+1
example: {B, D, H}

length (of path): number of edges in path
example: 2 (B → D and D → H)

internal path length: sum of depth of nodes
example: 6 = 1 + 2 + 3
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tree/node height

A

B C

E F GD

H

parent child

height (of a node): length of longest path to leaf

height (of a tree): height of tree’s root
(this example: 3)

3

2

1

0

1

0 0 0
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tree/node depth

A

B C

E F GD

H

parent child

depth (of a node): length of path to root
0

1

2

3

1

2 2 2
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first child/next sibling

class TreeNode {
private:

string element;
TreeNode *firstChild;
TreeNode *nextSibling;

public:
...

};

home

aaron

cs2150 cs4970
nextSibling

mail

lab1

firstChild

lab2 proj1

proj.hcoll.h coll.cpp
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another tree representations

class TreeNode {
private:

string element;
vector<TreeNode *> children;

public:
...

};

// and more --- see when we talk about graphs
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tree traversal

/

×

+

1 2

-

3 4

×

5 6

pre-order: / * + 1 2 - 3 4 * 5 6
in-order: (((1+2) * (3-4)) / (5*6)) (parenthesis optional?)
post-order: 1 2 + 3 4 - * 5 6 * /
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pre/post-order traversal printing

(this is pseudocode)
TreeNode::printPreOrder() {

this−>print();
for each child c of this:

c−>printPreOrder()
}

TreeNode::printPostOrder() {
for each child c of this:

c−>printPostOrder()
this−>print();

}
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in-order traversal printing

(this is pseudocode)
BinaryTreeNode::printInOrder() {

if (this−>left)
this−>left−>printInOrder();

cout << this−>element << "␣";
if (this−>right)

this−>right−>printInOrder();
}
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post-order traversal counting

(this is pseudocode)
int numNodes(TreeNode *tnode) {
if ( tnode == NULL )

return 0;
else {

sum=0;
for each child c of tnode

sum += numNodes(c);
return 1 + sum;

}
}
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expression tree and traversals

+

a *

+

b c

d

(a + ((b + c) * d))
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expression tree and traversals

+

a *

+

b c

d

infix: (a + ((b + c) * d))
postfix: a b c + d * +
prefix: + a * + b c d
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postfix expression to tree

use a stack of trees

number n → push( n )

operator OP →
pop into A, B; then
push OP

AB
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example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e
*

c +

d e

*

+

a b

*

c +

d e

23



example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e
*

c +

d e

*

+

a b

*

c +

d e

23



example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e
*

c +

d e

*

+

a b

*

c +

d e

23



example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e
*

c +

d e

*

+

a b

*

c +

d e

23



example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e

*

c +

d e

*

+

a b

*

c +

d e

23



example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e

*

c +

d e

*

+

a b

*

c +

d e

23



example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e

*

c +

d e

*

+

a b

*

c +

d e

23



binary trees

class BinaryNode {
...
int element;
BinaryNode *left;
BinaryNode *right;

};

all nodes have at most 2 children
1

2

3

4

5

6

7

1

2

4 5

3

6 7

element = 2
left = NULL
right = addr of node 3

element = 7
left = NULL
right = NULL
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binary search trees

binary tree and…

each node has a key
for each node:

keys in node’s left subtree are less than node’s
keys in node’s right subtree are greater than node’s

4
2

1 3
5

7
6 8

left subtree of 4
right subtree of 4

right subtree of 5
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binary search trees

binary tree and…
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not a binary search tree
8

5

2

4

6

11

10

15

18

20

21
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binary search tree versus binary tree

binary search trees are a kind of binary tree

…but — often people say “binary tree” to mean “binary search tree”
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BST: find

(pseudocode)
find(node, key) {

if (node == NULL)
return NULL;

else if (key < node−>key)
return find(node−>left, key)

else if (key > node−>key)
return find(node−>right, key)

else // if (key == node->key)
return node;

}
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BST: insert

(pseudocode)
insert(Node *&node, key) {

if (node == NULL)
node = new BinaryNode(key);

else if (key < node−>key)
insert(node−>left, key);

else if (key < root−>key)
insert(node−>right, key);

else // if (key > root->key)
; // duplicate -- no new node needed

}
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BST: findMin

(pseudocode)
findMin(Node *node, key) {

if (node−>left == NULL)
return node;

else
insert(node−>left, key);

}
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BST: remove (1)

5

4

1

3

9

7 11

5

4

1

3

9

11

case 1: no children
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BST: remove (2)

5

4

1

3

9

7 11
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3

9

7 11

case 2: one child
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BST: remove (3)

5

4

1

3

9

7 11

7

4

3

9

11

case 3: two children

replace with minimum of right subtree
(alternately: maximum of left subtree, …)
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binary tree: worst-case height

1

2

3

4

5

6

7

n-node BST: worst-case height/depth n − 1
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binary tree: best-case height

4

2

1 3

6

5 7

height h: at most 2h+1 − 1 nodes
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binary tree: proof best-case height is possible

proof by induction: can have 2h+1 − 1 nodes in h-height tree

h = 0: h = 0: exactly one node; 2h+1 − 1 = 1 nodes

h = k → h = k + 1:
start with two copies of a maximum tree of height k

create a new tree as follows:
create a new root node
add edges from the root node to the roots of the copies

the height of this new tree is k + 1
path of length k in old tree + either new edge

the number of nodes is
2(2k+1 − 1) + 1 = 2k+1+1 − 2 + 1 = 2k+1+1 − 1
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binary tree: best-case height is best

(informally)

property of trees in root:
except for the leaves, every node in tree has 2 children

no way to add nodes without increasing height
add below leaf — longer path to root — longer height
add above root — every old node has longer path to root
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binary tree height formula

n: number of nodes

h: height

n + 1 ≤ 2h+1

log2(n + 1) ≤ log2
(
2h+1)

log(n + 1) ≤ h + 1
h ≥ log2 (n + 1) − 1

shortest tree of n nodes: ∼ log2(n) height
38



perfect binary trees

4

2

1 3

6

5 7
a binary tree is perfect if

all leaves have same depth
all nodes have zero children (leaf) or two children

exactly the trees that achieve 2h+1 − 1 nodes
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AVL animation tool

http://webdiis.unizar.es/asignaturas/EDA/
AVLTree/avltree.html

40
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AVL tree idea

AVL trees: one of many balanced trees —
search tree balanced to keep height Θ(log n)
avoid “tree is just a long linked list” scenarios

gaurentees Θ(log n) for find, insert, remove

AVL = Adelson-Velskii and Landis
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AVL gaurentee

the height of the left and right subtrees of every node differs by at
most one
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AVL state

normal binary search tree stuff:
data; and left, right, parent pointers

additional AVL stuff:
height of right subtree minus height of left subtree

called “balance factor”
-1, 0, +1

(kept up to date on insert/delete — computing on demand is too slow)
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example AVL tree

5

4

1

9

7

8

11
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example AVL tree

5
b: +1

4
b: -1

1
b: 0

9
b: -1

7
b: +1

8
b: 0

11
b: 0
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example non-AVL tree

5
b: -2

4
b: -3

1
b: +2

3
b: -1

2
b: 0

8
b: 0

7
b: 0

11
b: 0
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AVL tree algorithms

find — exactly the same as binary search tree
just ignore balance factors

insert — two extra steps:
update balance factors
“fix” tree if it became unbalanced

runtime for both Θ(d) where d is depth of node found/inserted
max balance factor ±1 at root
max depth of node is Θ(log2 n + 1) = Θ(log n)
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AVL insertion cases

simple case: tree remains balanced

otherwise:
let x be deepest imbalanced node (+2/-2 balance factor)

insert in left subtree of left child of x: single rotation right
insert in right subtree of right child of x: single rotation left
insert in right subtree of left child of x: double left-right rotation
insert in left subtree of right child of x: double right-left rotation
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AVL: simple right rotation

just inserted 0
unbalanced root becomes new left child

3
b: -2

2
b: -1

1
b: 0

2
b: 0

1
b: 0

3
b: 0
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AVL: less simple right rotation (1)

just inserted 0
unbalanced root becomes new left child

5
b: -2

3
b: -1

2
b: -1

1
b: 0

4
b: 0

10
b: 0

3
b: 0

2
b: -1

1
b: 0

5
b: 0

4
b: 0

10
b: 0
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AVL: simple left rotation

just inserted 1
deepest unbalanced node is 3

1
b: +2

2
b: +1

3
b: 0

2
b: 0

1
b: 0

3
b: 0
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AVL rotation: up and down

at least one node moves up (this case: 1 and 2)
at least one node moves down (this case: 3)

3
b: -2

2
b: -1

1
b: 0

2
b: 0

1
b: 0

3
b: 0
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AVL: less simple right rotation (2)

just inserted 1
15

b: -2

5
b: -2

3
b: -1

2
b: -1

1
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

15
b: -1

3
b: 0

2
b: -1

1
b: 0

5
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

deepest unbalanced subtree
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AVL: less simple right rotation (2)

just inserted 1
15

b: -2

5
b: -2

3
b: -1

2
b: -1

1
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

15
b: -1

3
b: 0

2
b: -1

1
b: 0

5
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

deepest unbalanced subtree
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AVL: less simple right rotation (2)

just inserted 1
15

b: -2

5
b: -2

3
b: -1

2
b: -1

1
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

15
b: -1

3
b: 0

2
b: -1

1
b: 0

5
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

deepest unbalanced subtree
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AVL: less simple right rotation (2)

just inserted 1
15

b: -2

5
b: -2

3
b: -1

2
b: -1

1
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

15
b: -1

3
b: 0

2
b: -1

1
b: 0

5
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

deepest unbalanced subtree
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general single rotation
a

b

X
(h+1)

Y
(h)

Z
(h)

b

X
(h+1)

a

Y
(h)

Z
(h)

rotate
right

rotate
left

X < b < Y < a < Z
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double rotation

15
b: -2

8
b: -2

4
b: 1

3
b: 0

6
b: -1

5
b: 0

10
b: 0

17
b: -1

16
b: 0

15
b: -1

6
b: 0

4
b: 0

3
b: 0

5
b: 0

8
b: 1

10
b: 0

17
b: -1

16
b: 0

step 1: rotate subtree left
step 2: rotate imbalanced tree right

8
b: 8

6
b: -1

4
b: -1

3
b: 0

5
b: 0

10
b: 0
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double rotation

15
b: -2

8
b: -2

4
b: 1

3
b: 0

6
b: -1

5
b: 0

10
b: 0

17
b: -1

16
b: 0

15
b: -1

6
b: 0

4
b: 0

3
b: 0

5
b: 0

8
b: 1

10
b: 0

17
b: -1

16
b: 0

step 1: rotate subtree left
step 2: rotate imbalanced tree right

8
b: 8

6
b: -1

4
b: -1

3
b: 0

5
b: 0

10
b: 0
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double rotation

15
b: -2

8
b: -2

4
b: 1

3
b: 0

6
b: -1

5
b: 0

10
b: 0

17
b: -1

16
b: 0

15
b: -1

6
b: 0

4
b: 0

3
b: 0

5
b: 0

8
b: 1

10
b: 0

17
b: -1

16
b: 0

step 1: rotate subtree left
step 2: rotate imbalanced tree right

8
b: 8

6
b: -1

4
b: -1

3
b: 0

5
b: 0

10
b: 0
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double rotation

15
b: -2

8
b: -2

4
b: 1

3
b: 0

6
b: -1

5
b: 0

10
b: 0

17
b: -1

16
b: 0

15
b: -1

6
b: 0

4
b: 0

3
b: 0

5
b: 0

8
b: 1

10
b: 0

17
b: -1

16
b: 0

step 1: rotate subtree left
step 2: rotate imbalanced tree right

8
b: 8

6
b: -1

4
b: -1

3
b: 0

5
b: 0

10
b: 0
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general double rotation

a

b

W
(h)

c

X
(h)

Y
(h-1)

Z
(h)

c

b

W
(h)

X
(h)

a

Y
(h-1) Z

(h)

rotate

W < b < X < c < Y < Z

c becomes root, so its children
X and Y both switch parents
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general double rotation

a

b

W
(h)

c

X
(h)

Y
(h-1)

Z
(h)

c

b

W
(h)

X
(h)

a

Y
(h-1) Z

(h)

rotate

W < b < X < c < Y < Z

c becomes root, so its children
X and Y both switch parents
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double rotation names

sometimes “double left”
first rotation left, or second?

us: “double left-right”
rotate child tree left
rotate parent tree right

“double right-left”
rotate child tree right
rotate parent tree left
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AVL insertion cases

simple case: tree remains balanced

otherwise:
let x be deepest imbalanced node (+2/-2 balance factor)

insert in left subtree of left child of x: single rotation right
insert in right subtree of right child of x: single rotation left
insert in right subtree of left child of x: double left-right rotation
insert in left subtree of right child of x: double right-left rotation
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AVL insert cases (revisited)

3
b: -2

2
b: -1

1
b: 0

1
b: +2

2
b: +1

3
b: 0

3
b: -2

1
b: +1

2
b: 0

1
b: +2

3
b: -1

2
b: 0

single left single right left-right right-left

choose rotation based on lowest imbalanced node
and on direction of insertion
(inserted node is green+dashed)
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AVL insert cases (revisited)

3
b: -2

2
b: -1

1
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b: 0

3
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1
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1
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AVL insert case: detail (1)

3
b: -2

2
b: -1

1
b: 0

7
b: -2

3
b: -2

2
b: -1

1
b: 0

9
b: 0

choose rotation based on
lowest imbalanced node
and on direction of insertion
(inserted node is green+dashed)
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AVL insert case: detail (2)

3
b: -2

2
b: -1

0
b: 0

7
b: -2

4
b: -1

2
b: -1

1
b: -1

0
b: 0

3
b: 0

5
b: +1

6
b: 0

8
b: 0 choose using

lowest imbalanced node
and on direction of insertion
(inserted node is
green+dashed)
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AVL tree: runtime

worst depth of node: Θ(log2 n + 2) = Θ(log n)
find: Θ(log n)

worst case: traverse from root to worst depth leaf

insert: Θ(log n)
worst case: traverse from root to worst depth leaf
then back up (update balance factors)
then perform constant time rotation

remove: Θ(log n)
left as exercise (similar to insert)

print: Θ(n)
visit each of n nodes
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other types of trees

many kinds of balanced trees

not all binary trees

different ways of tracking balance factors, etc.

different ways of doing tree rotations or equivalent

63



red-black trees

each node is red or black
null leafs considered nodes to aid analysis (still null pointers…)
rules about when nodes can be red/black gaurentee maximum depth

13

8

1

nNULL 6

nNULL nNULL

11

nNULL nNULL

17

15

nNULL nNULL

25

22

nNULL nNULL

27

nNULL nNULL 64



red-black tree rules

root is black

counting null pointers as nodes, leaves are black

a red node’s children are black
→ a red node’s parents are black

every simple path from node to leaf under it contains same number
of black nodes

(property holds regardless of whether null pointers are considered nodes)
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worst red-black tree imbalance

same number of black nodes on paths to leaves
→ factor of 2 imbalance max

A

B

D E

C

F

H

J K

I

L M

G

N O
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red-black insert

default: insert as red (no change to black node count), but…

(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

property: “root is black”
no children → no worries about # black nodes
on different paths
property: “children of red node are black”
no change in # of black nodes on paths
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red-black insert

default: insert as red (no change to black node count), but…

(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

property: “root is black”
no children → no worries about # black nodes
on different paths

property: “children of red node are black”
no change in # of black nodes on paths
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red-black insert

default: insert as red (no change to black node count), but…

(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

property: “root is black”
no children → no worries about # black nodes
on different paths
property: “children of red node are black”
no change in # of black nodes on paths

69



case 3: parent, uncle are red

G

P U

N

1 2

3 4 5

G

P U

N

1 2

3 4 5

make grandparent red, parent and uncle black
(property: every path to leaf has same number of black nodes)
just swapped grandparent and parent/uncle in those paths

but…what if grandparent’s parent is red?
(property: children of red node are black)
solution: recurse to the grandparent, as if it was just inserted

image: Wikipedia/Abloomfi 70
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case 3: parent, uncle are red
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make grandparent red, parent and uncle black
(property: every path to leaf has same number of black nodes)
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red-black insert

default: insert as red (no change to black node count), but…

(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

property: “root is black”
no children → no worries about # black nodes
on different paths
property: “children of red node are black”
no change in # of black nodes on paths
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case 4: parent red, uncle black, right child

G

P U

N
1

2 3

4 5

G

UN

P

1 2

3 4 5

perform left rotation on parent subtree and new node

now case 5 (but new node is P , not N)

image: Wikipedia/Abloomfi 72



red-black insert

default: insert as red (no change to black node count), but…

(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

property: “root is black”
no children → no worries about # black nodes
on different paths
property: “children of red node are black”
no change in # of black nodes on paths
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case 5: parent red, uncle black, left child

G

P U

N

1 2

3 4 5

G

U

P

N

1 2 3

4 5

perform right rotation of grandparent and parent
swap colors of parent and grandparent
preserves properties:

red parent’s children are black
every path to leaf has same number of black nodes

image: Wikipedia/Abloomfi 74



example recursive case

100

10

3

1 5

8

15

200

10

3

1 5

8

100

15 200

initially:
leaves are black X
red node’s children are black X
same number of black nodes
in every path from node to leaves X

insert 8
initially make red
case 3: parent, uncle are red

3

1 5

8

before:

case 3: parent, uncle are red:
grandparent becomes red
parent/uncle black

case 3 (parent, uncle are red) continued:
recusively examine grandparent 3
case 5: parent (of 3) is red

uncle is black, left child

100

10

3

… …

15

200

case 5: parent is red
uncle is black, left child:

perform right rotation
of parent + grandparent (of 3)
(and swap parent/grandparent colors)
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RB-tree: removal

start with normal BST remove of x, but…

instead find next highest/lowest node y
can choose node with at most one child
(“bottom” of a left or right subtree)

swap x and y’s value, then replace y with its child

several cases for color maintainence/rotations
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RB tree: removal cases

N: node just replaced with child; S: its sibling; P: its parent

(1): N is new root
(2): S is red
(3): P, S, and S’s children are black
(4): S and S’s children are black
(5): S is black, S’s left child is red, S’s right child is black, N is
left child of P
(6): S is black, S’s right child is red, N is left child

details: see, e.g., Wikipedia article 77



why red-black trees?

a lot more cases…but

a lot less rotations

…because tree is kept less rigidly balanced

red-black trees end up being faster in practice
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more balanced trees

several other kinds of balanced trees

one notable kind: non-binary balanced trees

commonly used in databases
more efficient to store multiple nodes together on disk/SSD
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splay trees

tree that’s fast for recently used nodes

self-balancing binary search tree

keeps recent nodes near the top

simpler to implement than AVL or RB trees
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‘splaying’

every time node is accessed (find, insert, delete)…

“splay” tree around that node

make the node the new tree root

Θ(h) time — where h is tree height

worst-case height: Θ(n) — linked-list case

81



‘splaying’

every time node is accessed (find, insert, delete)…

“splay” tree around that node

make the node the new tree root

Θ(h) time — where h is tree height

worst-case height: Θ(n) — linked-list case

81



‘splaying’

every time node is accessed (find, insert, delete)…

“splay” tree around that node

make the node the new tree root

Θ(h) time — where h is tree height
worst-case height: Θ(n) — linked-list case

81



splay tree operations

3

2

1

4

3

2

1

2

1 3

4

insert 4 find 2
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amortized complexity

splay tree insert/find/delete is amortized O(log n) time

informally: average insert/find/delete: O(log n)

more formally: m operations: O(m log n) time (where n: max size
of tree)
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splay tree pro/con

can be faster than AVL, RB-trees in practice
take advantage of frequently accessed items

simpler to implement

but worst case find/insert is Θ(n) time
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last time

red-black trees
less well-balanced than AVL trees
track color instead of balance factor
rules about colors to limit possible imbalance
algorithm for insertion, etc. that makes tree always obey rules
usually faster in practice — less rotations

splay trees
optimized for repeated accesses
keep recently accessed items near top of tree
find rearranges tree!
amortized logarithmic time
(but worst case is linear)
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amortized analysis: vector growth

vector insert algorithm:
if not big enough, double capacity
write to end of vector

doubling size — requires copying! — Θ(n) time

Θ(n) worst case per insert

but average…?
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Θ(n) worst case per insert

but average…?
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counting copies (1)

suppose initial capacity 100 + insert 1600 elements
100 → 200: 100 copies
200 → 400: 200 copies
400 → 800: 400 copies
800 → 1600: 800 copies
total: 1500 copies

total operations: 1500 copies + 1600 writes of new elements
about 2 operations per insert
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counting copies (2)

more generally: for N inserts

about N copies + N writes
why? K to 2K elements: K copies
N inserts: 1 + 2 + 4 + . . . + N/4 + N/2 = N − 1 copies
(and a bit better if initial capacity isn’t 1)

Θ(n) worst case

but Θ(n) time for n inserts

→ O(1) amortized time per insert
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other vector capacity increases? (1)

instead of doubling…add 1000

N inserts: 1000 + 2000 + 3000 + . . . + N ∼ N2

→ Θ(N2) total — O(N) amortized time per insert

increase by constant: linear worst-case and amortized

89



other vector capacity increases? (1)

instead of doubling…add 1000

N inserts: 1000 + 2000 + 3000 + . . . + N ∼ N2

→ Θ(N2) total — O(N) amortized time per insert
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instead of doubling…multiply by k > 1
e.g. k = 1.1 — increase by 10%

N inserts: 1 + k + k2 + k3 + . . . + klogk N = 1 − klogk N

1 − k
∼ N

→ Θ(N) total — O(1) amortized time per insert
amortized constant time for all k > 1
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trees are not great for…

ordered, unsorted lists

list of TODO tasks

being easy/simple to implement

compare, e.g., stack/queue

Θ(1) time

compare vector

compare hashtables (almost)
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programs as trees

int z;

int foo (int x) {
for (int y = 0;

y < x;
y++)

cout << y << endl;
}

int main() {
int z = 5;
cout << "enter x" << endl;
cin >> z;
foo(z);

}

program

vars

int z

functions

foo()

params

int z

vars body

for

int y y < x y++ body

cout

y endl

main()

params vars

int z

=5

body

cout

"enter z" endl

cin

z

foo()

z
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programs as trees
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cin

z
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abstract syntax tree

program

vars

int z

functions

foo()

params

int z

vars body

for

int y y < x y++ body

cout
y endl

main()

params vars

int z

=5

body

cout

"enter z" endl

cin

z

foo()

z

for loop: four children
init, condition, update, body

class ASTNode {
...

};

// public class ForNode extends ASTNode
class ForNode : public ASTNode {

...
private:

ASTNode *init, *condition,
*update, *body;

};
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AST applications

“abstract syntax tree” = “parse tree”

part of how compilers work

do some tree traversal to do…

code generation — e.g. ASTNode::outputCode() method

optimization

type checking…
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using AST to compare programs

comparing trees is a good way to compare programs…
while ignoring:

function/method order (e.g. sort function nodes by length)

variable names (e.g. ignore variable names when comparing)

comments

…

part of many software plagerism/copy+paste detection tools
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