
trees

1

are lists enough?

for correctness — sure

want to efficiently access items
better than linear time to find something

want to represent relationships more naturally

2

inter-item relationships in lists

1 2 3 4 5

List: nodes related to predecessor/successor

3

trees

trees: allow representing more relationships
(but not arbitrary relationships — see graphs later in semester)

restriction: single path from root to every node
implies single path from every node to every other node (possibly
through root)

4

natural trees: phylogenetic tree

image: Ivicia Letunic and Mariana Ruiz Villarreal, via the tool iTOL (Interative Tree of Life), via Wikipedia 5

natural trees: phylogenetic tree (zoom)

image: Ivicia Letunic and Mariana Ruiz Villarreal, via the tool iTOL (Interative Tree of Life), via Wikipedia 6

natural trees: Indo-European languages

Kashubian

INDO-IRANIAN

IRANIAN

INDO-ARYAN

WESTERNEASTERN

WESTERN INDIC

Gandhari

CENTRAL INDIC

Maharashtri

Sindhi

Konkani

GoraniBalochi

Kurdish

Parthian

Talysh

Gilaki

Scythian

Sarmatian

Alanic

CELTIC

Manx

Irish

Cornish

Breton

GOIDELIC BRYTHONIC

Galatian

Celtiberian

TOCHARIAN

ARMENIAN

ANATOLIAN

ALBANIAN

GERMANIC

EAST

Gothic

Vandalic

Burgundian

Dutch

Afrikaans

Icelandic

Faroese

Norwegian

Norn

Swedish

Danish

Old Norse BALTO-SLAVIC

BALTIC SLAVIC

WEST EAST

SOUTH

Old West Slavic

ITALIC

Galindan

Prussian

Sudovian

Latvian

Lithuanian

Selonian

Semigallian

Belorussian

Russian

Rusyn

Bulgarian

Macedonian

Czech

SlovakPomeranian

LATINO-FALISCAN

Latin

Faliscan

SABELLIC

Classical Latin

Vulgar Latin

EASTERN

Romanian

DalmatianAromanian

ITALO-WESTERN

ITALO-DALMATIAN

IBERIAN

Italian

Astur-Leonese

 Galician-Portuguese

INDO-EUROPEAN

HittiteLuwian

Lycian

Carian

Palaic

Lydian

PAHARI

Dogri Garhwali

DARDIC

Kashmiri

Pashayi

Magahi

Bhojpuri

Maithili

Oriya

Magadhi

Dhivehi

Avestan

Bactrian Sogdian

Yaghnobi

Tat

Old Persian

Persian

Tajik Juhuru

Aequian

Marsian

Oscan

Sardinian

Logudorese

Campidanese

Ecclesiastical Latin

Gaulish

Lepontic

Noric

Old West Norse Old East Norse

Standard German

Old High German

Flemish

Yiddish

Old Frisian Old English

ANGLO-FRISIAN

Scots

English

Turfanian

Kuchean

INSULAR

CONTINENTAL

Armenian

Albanian

ROMANCE

Sinhalese

Vedda

Vedic Sanskrit

Hindi Urdu

Dakhini

Rekhta

Mozarabic

Aragonese

Walloon

Emilian

Rhaetian

Friulian

HELLENIC

Aegean

MycenaeanDORIAN

Northwest Greek

Doric Attic

Arcado

Cypriot

Ionic

Epic Greek

Classical Greek

Koine Greek

Greek

Tsakonian

Low German

Cumbric

Welsh

Scottish Gaelic

Gallo

Volscian

Umbrian

Saka

Ossetian

PashtoPamiri

Bengali

Bhil

Marathi

Shina

Kumaoni

WEST

Prakrit

INSULAR INDIC

Potwari

Punjabi

Domari

Waziri

Yidgha Shughni

Vanji

Sarikoli

Khotanese

Khwarezmian

Median

Mazanderani

Shahmirzadi

CASPIAN

Zazaki

Zaza-Gorani

Middle Persian

Bukhori

Dari

Lurish

Bakhtiari

Old East Slavic

Ukrainian

Ruthenian

Old Novgorod

Old Church Slavonic

Church Slavonic

Serbo-Croatian

LECHITIC

Sorbian

Polish

Ivernic

Pictish

Common Brittonic

Hazaragi

Deilami

Greenlandic Norse

Old Gutnish

Pisidian

Old Saxon

Old Dutch

Yola

Assamese

WEST EAST

CENTRAL GERMAN

Limburgish

Old East Low Franconian

SOUTH

NORTH

Niya

Shauraseni

Nuristani

HINDUSTANI

BIHARI

ACHAEAN

AEOLIC

Beotian

Thessalian

EAST

Yazgulami

NORTHSOUTH

Nepali

Palpa

Halbi Chittagonian

NORTH CENTRAL EASTERN

Lahnda

Paisaci

Haryanvi

Luxembourgish

Ripuarian

Thuringian

Kumzari

Alemannic

Austro-Bavarian

Cimbrian

Istriot

Sassarese

Neapolitan

Sicilian

GALLO-IBERIAN

OCCITAN

GALLIC

CISALPINE

Spanish Portuguese

Galician

Catalan

OccitanLigurian

Lombard

Piedmontese

Venetian

Arpitan

Romansh

UPPER GERMAN

Swiss German

Old Polish

Romani

Gujarati

Rajasthani

Norman

French

Pali

Sanskrit

Asturian

Leonese

Mirandese

Slovene

Serbian

Croatian

Bosnian

WESTERN

EASTERN

Knaanic

Czech-Slovak

Polabian

Silesian

Fala

LadinoExtremaduran

Old Spanish

Ladin

Corsican

Istro-Romanian

Megleno-Romanian

LANGUE D'OÏL

Crimean Gothic

North Frisian

Saterland Frisian

West Frisian

Elfdalian

LOW FRANCONIAN

Eonavian

WEST

image: via Wikipedia/Mandrak 7

list to tree

predecessor element successor

list — up to 2 related nodes

parent

element

left child left child

binary tree — up to 3 related nodes (list is special-case)

8

more general trees

parent

element

child 1 child 2 child n…

tree — any number of relationships (binary tree is special case)
at most one parent

9

tree terms (1)

A

B C

E F GD

H

parent child
root: node with no parents

leafs: nodes with no children

siblings: nodes with the same parent

10

paths and path lengths

A

B C

E F GD

H

path: sequence of nodes n1, n2, . . . , nk

such that ni is parent of ni+1
example: {B, D, H}

length (of path): number of edges in path
example: 2 (B → D and D → H)

internal path length: sum of depth of nodes
example: 6 = 1 + 2 + 3

11

tree/node height

A

B C

E F GD

H

parent child

height (of a node): length of longest path to leaf

height (of a tree): height of tree’s root
(this example: 3)

3

2

1

0

1

0 0 0

12

tree/node depth

A

B C

E F GD

H

parent child

depth (of a node): length of path to root
0

1

2

3

1

2 2 2

13

first child/next sibling

class TreeNode {
private:

string element;
TreeNode *firstChild;
TreeNode *nextSibling;

public:
...

};

home

aaron

cs2150 cs4970
nextSibling

mail

lab1

firstChild

lab2 proj1

proj.hcoll.h coll.cpp

14

another tree representations

class TreeNode {
private:

string element;
vector<TreeNode *> children;

public:
...

};

// and more --- see when we talk about graphs

15

tree traversal

/

×

+

1 2

-

3 4

×

5 6

pre-order: / * + 1 2 - 3 4 * 5 6
in-order: (((1+2) * (3-4)) / (5*6)) (parenthesis optional?)
post-order: 1 2 + 3 4 - * 5 6 * /

16

pre/post-order traversal printing

(this is pseudocode)
TreeNode::printPreOrder() {

this−>print();
for each child c of this:

c−>printPreOrder()
}

TreeNode::printPostOrder() {
for each child c of this:

c−>printPostOrder()
this−>print();

}

17

in-order traversal printing

(this is pseudocode)
BinaryTreeNode::printInOrder() {

if (this−>left)
this−>left−>printInOrder();

cout << this−>element << "␣";
if (this−>right)

this−>right−>printInOrder();
}

18

post-order traversal counting

(this is pseudocode)
int numNodes(TreeNode *tnode) {
if (tnode == NULL)

return 0;
else {

sum=0;
for each child c of tnode

sum += numNodes(c);
return 1 + sum;

}
}

19

expression tree and traversals

+

a *

+

b c

d

(a + ((b + c) * d))

20

expression tree and traversals

+

a *

+

b c

d

infix: (a + ((b + c) * d))
postfix: a b c + d * +
prefix: + a * + b c d

21

postfix expression to tree

use a stack of trees

number n → push(n)

operator OP →
pop into A, B; then
push OP

AB

22

example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e
*

c +

d e

*

+

a b

*

c +

d e

23

example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e
*

c +

d e

*

+

a b

*

c +

d e

23

example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e
*

c +

d e

*

+

a b

*

c +

d e

23

example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e
*

c +

d e

*

+

a b

*

c +

d e

23

example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e

*

c +

d e

*

+

a b

*

c +

d e

23

example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e

*

c +

d e

*

+

a b

*

c +

d e

23

example

a b + c d e + * *

top of stack

a

b

+

a b

c

d

e

c

+

d e

*

c +

d e

*

+

a b

*

c +

d e

23

binary trees

class BinaryNode {
...
int element;
BinaryNode *left;
BinaryNode *right;

};

all nodes have at most 2 children
1

2

3

4

5

6

7

1

2

4 5

3

6 7

element = 2
left = NULL
right = addr of node 3

element = 7
left = NULL
right = NULL

24

binary trees

class BinaryNode {
...
int element;
BinaryNode *left;
BinaryNode *right;

};

all nodes have at most 2 children
1

2

3

4

5

6

7

1

2

4 5

3

6 7

element = 2
left = NULL
right = addr of node 3

element = 7
left = NULL
right = NULL

24

binary trees

class BinaryNode {
...
int element;
BinaryNode *left;
BinaryNode *right;

};

all nodes have at most 2 children
1

2

3

4

5

6

7

1

2

4 5

3

6 7

element = 2
left = NULL
right = addr of node 3

element = 7
left = NULL
right = NULL

24

binary search trees

binary tree and…

each node has a key
for each node:

keys in node’s left subtree are less than node’s
keys in node’s right subtree are greater than node’s

4
2

1 3
5

7
6 8

left subtree of 4
right subtree of 4

right subtree of 5

25

binary search trees

binary tree and…

each node has a key
for each node:

keys in node’s left subtree are less than node’s
keys in node’s right subtree are greater than node’s

4
2

1 3
5

7
6 8left subtree of 4

right subtree of 4

right subtree of 5

25

binary search trees

binary tree and…

each node has a key
for each node:

keys in node’s left subtree are less than node’s
keys in node’s right subtree are greater than node’s

4
2

1 3
5

7
6 8

left subtree of 4
right subtree of 4

right subtree of 5
25

not a binary search tree
8

5

2

4

6

11

10

15

18

20

21

26

binary search tree versus binary tree

binary search trees are a kind of binary tree

…but — often people say “binary tree” to mean “binary search tree”

27

BST: find

(pseudocode)
find(node, key) {

if (node == NULL)
return NULL;

else if (key < node−>key)
return find(node−>left, key)

else if (key > node−>key)
return find(node−>right, key)

else // if (key == node->key)
return node;

}

28

BST: insert

(pseudocode)
insert(Node *&node, key) {

if (node == NULL)
node = new BinaryNode(key);

else if (key < node−>key)
insert(node−>left, key);

else if (key < root−>key)
insert(node−>right, key);

else // if (key > root->key)
; // duplicate -- no new node needed

}

29

BST: findMin

(pseudocode)
findMin(Node *node, key) {

if (node−>left == NULL)
return node;

else
insert(node−>left, key);

}

30

BST: remove (1)

5

4

1

3

9

7 11

5

4

1

3

9

11

case 1: no children

31

BST: remove (2)

5

4

1

3

9

7 11

5

4

3

9

7 11

case 2: one child

32

BST: remove (3)

5

4

1

3

9

7 11

7

4

3

9

11

case 3: two children

replace with minimum of right subtree
(alternately: maximum of left subtree, …)

33

binary tree: worst-case height

1

2

3

4

5

6

7

n-node BST: worst-case height/depth n − 1

34

binary tree: best-case height

4

2

1 3

6

5 7

height h: at most 2h+1 − 1 nodes

35

binary tree: proof best-case height is possible

proof by induction: can have 2h+1 − 1 nodes in h-height tree

h = 0: h = 0: exactly one node; 2h+1 − 1 = 1 nodes

h = k → h = k + 1:
start with two copies of a maximum tree of height k

create a new tree as follows:
create a new root node
add edges from the root node to the roots of the copies

the height of this new tree is k + 1
path of length k in old tree + either new edge

the number of nodes is
2(2k+1 − 1) + 1 = 2k+1+1 − 2 + 1 = 2k+1+1 − 1

36

binary tree: best-case height is best

(informally)

property of trees in root:
except for the leaves, every node in tree has 2 children

no way to add nodes without increasing height
add below leaf — longer path to root — longer height
add above root — every old node has longer path to root

37

binary tree height formula

n: number of nodes

h: height

n + 1 ≤ 2h+1

log2(n + 1) ≤ log2
(
2h+1)

log(n + 1) ≤ h + 1
h ≥ log2 (n + 1) − 1

shortest tree of n nodes: ∼ log2(n) height
38

perfect binary trees

4

2

1 3

6

5 7
a binary tree is perfect if

all leaves have same depth
all nodes have zero children (leaf) or two children

exactly the trees that achieve 2h+1 − 1 nodes

39

AVL animation tool

http://webdiis.unizar.es/asignaturas/EDA/
AVLTree/avltree.html

40

http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html
http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html

AVL tree idea

AVL trees: one of many balanced trees —
search tree balanced to keep height Θ(log n)
avoid “tree is just a long linked list” scenarios

gaurentees Θ(log n) for find, insert, remove

AVL = Adelson-Velskii and Landis

41

AVL gaurentee

the height of the left and right subtrees of every node differs by at
most one

42

AVL state

normal binary search tree stuff:
data; and left, right, parent pointers

additional AVL stuff:
height of right subtree minus height of left subtree

called “balance factor”
-1, 0, +1

(kept up to date on insert/delete — computing on demand is too slow)

43

example AVL tree

5

4

1

9

7

8

11

44

example AVL tree

5
b: +1

4
b: -1

1
b: 0

9
b: -1

7
b: +1

8
b: 0

11
b: 0

44

example non-AVL tree

5
b: -2

4
b: -3

1
b: +2

3
b: -1

2
b: 0

8
b: 0

7
b: 0

11
b: 0

45

AVL tree algorithms

find — exactly the same as binary search tree
just ignore balance factors

insert — two extra steps:
update balance factors
“fix” tree if it became unbalanced

runtime for both Θ(d) where d is depth of node found/inserted
max balance factor ±1 at root
max depth of node is Θ(log2 n + 1) = Θ(log n)

46

AVL tree algorithms

find — exactly the same as binary search tree
just ignore balance factors

insert — two extra steps:
update balance factors
“fix” tree if it became unbalanced

runtime for both Θ(d) where d is depth of node found/inserted
max balance factor ±1 at root
max depth of node is Θ(log2 n + 1) = Θ(log n)

46

AVL insertion cases

simple case: tree remains balanced

otherwise:
let x be deepest imbalanced node (+2/-2 balance factor)

insert in left subtree of left child of x: single rotation right
insert in right subtree of right child of x: single rotation left
insert in right subtree of left child of x: double left-right rotation
insert in left subtree of right child of x: double right-left rotation

47

AVL: simple right rotation

just inserted 0
unbalanced root becomes new left child

3
b: -2

2
b: -1

1
b: 0

2
b: 0

1
b: 0

3
b: 0

48

AVL: less simple right rotation (1)

just inserted 0
unbalanced root becomes new left child

5
b: -2

3
b: -1

2
b: -1

1
b: 0

4
b: 0

10
b: 0

3
b: 0

2
b: -1

1
b: 0

5
b: 0

4
b: 0

10
b: 0

49

AVL: simple left rotation

just inserted 1
deepest unbalanced node is 3

1
b: +2

2
b: +1

3
b: 0

2
b: 0

1
b: 0

3
b: 0

50

AVL rotation: up and down

at least one node moves up (this case: 1 and 2)
at least one node moves down (this case: 3)

3
b: -2

2
b: -1

1
b: 0

2
b: 0

1
b: 0

3
b: 0

51

AVL: less simple right rotation (2)

just inserted 1
15

b: -2

5
b: -2

3
b: -1

2
b: -1

1
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

15
b: -1

3
b: 0

2
b: -1

1
b: 0

5
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

deepest unbalanced subtree

52

AVL: less simple right rotation (2)

just inserted 1
15

b: -2

5
b: -2

3
b: -1

2
b: -1

1
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

15
b: -1

3
b: 0

2
b: -1

1
b: 0

5
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

deepest unbalanced subtree

52

AVL: less simple right rotation (2)

just inserted 1
15

b: -2

5
b: -2

3
b: -1

2
b: -1

1
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

15
b: -1

3
b: 0

2
b: -1

1
b: 0

5
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

deepest unbalanced subtree

52

AVL: less simple right rotation (2)

just inserted 1
15

b: -2

5
b: -2

3
b: -1

2
b: -1

1
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

15
b: -1

3
b: 0

2
b: -1

1
b: 0

5
b: 0

4
b: 0

10
b: 0

20
b: 0

17
b: 0

21
b: 0

deepest unbalanced subtree

52

general single rotation
a

b

X
(h+1)

Y
(h)

Z
(h)

b

X
(h+1)

a

Y
(h)

Z
(h)

rotate
right

rotate
left

X < b < Y < a < Z

53

double rotation

15
b: -2

8
b: -2

4
b: 1

3
b: 0

6
b: -1

5
b: 0

10
b: 0

17
b: -1

16
b: 0

15
b: -1

6
b: 0

4
b: 0

3
b: 0

5
b: 0

8
b: 1

10
b: 0

17
b: -1

16
b: 0

step 1: rotate subtree left
step 2: rotate imbalanced tree right

8
b: 8

6
b: -1

4
b: -1

3
b: 0

5
b: 0

10
b: 0

54

double rotation

15
b: -2

8
b: -2

4
b: 1

3
b: 0

6
b: -1

5
b: 0

10
b: 0

17
b: -1

16
b: 0

15
b: -1

6
b: 0

4
b: 0

3
b: 0

5
b: 0

8
b: 1

10
b: 0

17
b: -1

16
b: 0

step 1: rotate subtree left
step 2: rotate imbalanced tree right

8
b: 8

6
b: -1

4
b: -1

3
b: 0

5
b: 0

10
b: 0

54

double rotation

15
b: -2

8
b: -2

4
b: 1

3
b: 0

6
b: -1

5
b: 0

10
b: 0

17
b: -1

16
b: 0

15
b: -1

6
b: 0

4
b: 0

3
b: 0

5
b: 0

8
b: 1

10
b: 0

17
b: -1

16
b: 0

step 1: rotate subtree left
step 2: rotate imbalanced tree right

8
b: 8

6
b: -1

4
b: -1

3
b: 0

5
b: 0

10
b: 0

54

double rotation

15
b: -2

8
b: -2

4
b: 1

3
b: 0

6
b: -1

5
b: 0

10
b: 0

17
b: -1

16
b: 0

15
b: -1

6
b: 0

4
b: 0

3
b: 0

5
b: 0

8
b: 1

10
b: 0

17
b: -1

16
b: 0

step 1: rotate subtree left
step 2: rotate imbalanced tree right

8
b: 8

6
b: -1

4
b: -1

3
b: 0

5
b: 0

10
b: 0

54

general double rotation

a

b

W
(h)

c

X
(h)

Y
(h-1)

Z
(h)

c

b

W
(h)

X
(h)

a

Y
(h-1) Z

(h)

rotate

W < b < X < c < Y < Z

c becomes root, so its children
X and Y both switch parents

55

general double rotation

a

b

W
(h)

c

X
(h)

Y
(h-1)

Z
(h)

c

b

W
(h)

X
(h)

a

Y
(h-1) Z

(h)

rotate

W < b < X < c < Y < Z

c becomes root, so its children
X and Y both switch parents

55

double rotation names

sometimes “double left”
first rotation left, or second?

us: “double left-right”
rotate child tree left
rotate parent tree right

“double right-left”
rotate child tree right
rotate parent tree left

56

AVL insertion cases

simple case: tree remains balanced

otherwise:
let x be deepest imbalanced node (+2/-2 balance factor)

insert in left subtree of left child of x: single rotation right
insert in right subtree of right child of x: single rotation left
insert in right subtree of left child of x: double left-right rotation
insert in left subtree of right child of x: double right-left rotation

57

AVL insert cases (revisited)

3
b: -2

2
b: -1

1
b: 0

1
b: +2

2
b: +1

3
b: 0

3
b: -2

1
b: +1

2
b: 0

1
b: +2

3
b: -1

2
b: 0

single left single right left-right right-left

choose rotation based on lowest imbalanced node
and on direction of insertion
(inserted node is green+dashed)

58

AVL insert cases (revisited)

3
b: -2

2
b: -1

1
b: 0

1
b: +2

2
b: +1

3
b: 0

3
b: -2

1
b: +1

2
b: 0

1
b: +2

3
b: -1

2
b: 0

single left single right left-right right-left
choose rotation based on lowest imbalanced node
and on direction of insertion
(inserted node is green+dashed) 58

AVL insert case: detail (1)

3
b: -2

2
b: -1

1
b: 0

7
b: -2

3
b: -2

2
b: -1

1
b: 0

9
b: 0

choose rotation based on
lowest imbalanced node
and on direction of insertion
(inserted node is green+dashed)

59

AVL insert case: detail (2)

3
b: -2

2
b: -1

0
b: 0

7
b: -2

4
b: -1

2
b: -1

1
b: -1

0
b: 0

3
b: 0

5
b: +1

6
b: 0

8
b: 0 choose using

lowest imbalanced node
and on direction of insertion
(inserted node is
green+dashed)

60

61

AVL tree: runtime

worst depth of node: Θ(log2 n + 2) = Θ(log n)
find: Θ(log n)

worst case: traverse from root to worst depth leaf

insert: Θ(log n)
worst case: traverse from root to worst depth leaf
then back up (update balance factors)
then perform constant time rotation

remove: Θ(log n)
left as exercise (similar to insert)

print: Θ(n)
visit each of n nodes

62

other types of trees

many kinds of balanced trees

not all binary trees

different ways of tracking balance factors, etc.

different ways of doing tree rotations or equivalent

63

red-black trees

each node is red or black
null leafs considered nodes to aid analysis (still null pointers…)
rules about when nodes can be red/black gaurentee maximum depth

13

8

1

nNULL 6

nNULL nNULL

11

nNULL nNULL

17

15

nNULL nNULL

25

22

nNULL nNULL

27

nNULL nNULL 64

red-black tree rules

root is black

counting null pointers as nodes, leaves are black

a red node’s children are black
→ a red node’s parents are black

every simple path from node to leaf under it contains same number
of black nodes

(property holds regardless of whether null pointers are considered nodes)

65

worst red-black tree imbalance

same number of black nodes on paths to leaves
→ factor of 2 imbalance max

A

B

D E

C

F

H

J K

I

L M

G

N O

66

red-black insert

default: insert as red (no change to black node count), but…

(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

property: “root is black”
no children → no worries about # black nodes
on different paths
property: “children of red node are black”
no change in # of black nodes on paths

67

red-black insert

default: insert as red (no change to black node count), but…

(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

property: “root is black”
no children → no worries about # black nodes
on different paths

property: “children of red node are black”
no change in # of black nodes on paths

68

red-black insert

default: insert as red (no change to black node count), but…

(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

property: “root is black”
no children → no worries about # black nodes
on different paths
property: “children of red node are black”
no change in # of black nodes on paths

69

case 3: parent, uncle are red

G

P U

N

1 2

3 4 5

G

P U

N

1 2

3 4 5

make grandparent red, parent and uncle black
(property: every path to leaf has same number of black nodes)
just swapped grandparent and parent/uncle in those paths

but…what if grandparent’s parent is red?
(property: children of red node are black)
solution: recurse to the grandparent, as if it was just inserted

image: Wikipedia/Abloomfi 70

case 3: parent, uncle are red

G

P U

N

1 2

3 4 5

G

P U

N

1 2

3 4 5

make grandparent red, parent and uncle black
(property: every path to leaf has same number of black nodes)
just swapped grandparent and parent/uncle in those paths

but…what if grandparent’s parent is red?
(property: children of red node are black)
solution: recurse to the grandparent, as if it was just inserted

image: Wikipedia/Abloomfi 70

case 3: parent, uncle are red

G

P U

N

1 2

3 4 5

G

P U

N

1 2

3 4 5

make grandparent red, parent and uncle black
(property: every path to leaf has same number of black nodes)
just swapped grandparent and parent/uncle in those paths

but…what if grandparent’s parent is red?
(property: children of red node are black)
solution: recurse to the grandparent, as if it was just inserted

image: Wikipedia/Abloomfi 70

red-black insert

default: insert as red (no change to black node count), but…

(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

property: “root is black”
no children → no worries about # black nodes
on different paths
property: “children of red node are black”
no change in # of black nodes on paths

71

case 4: parent red, uncle black, right child

G

P U

N
1

2 3

4 5

G

UN

P

1 2

3 4 5

perform left rotation on parent subtree and new node

now case 5 (but new node is P , not N)

image: Wikipedia/Abloomfi 72

red-black insert

default: insert as red (no change to black node count), but…

(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

property: “root is black”
no children → no worries about # black nodes
on different paths
property: “children of red node are black”
no change in # of black nodes on paths

73

case 5: parent red, uncle black, left child

G

P U

N

1 2

3 4 5

G

U

P

N

1 2 3

4 5

perform right rotation of grandparent and parent
swap colors of parent and grandparent
preserves properties:

red parent’s children are black
every path to leaf has same number of black nodes

image: Wikipedia/Abloomfi 74

example recursive case

100

10

3

1 5

8

15

200

10

3

1 5

8

100

15 200

initially:
leaves are black X
red node’s children are black X
same number of black nodes
in every path from node to leaves X

insert 8
initially make red
case 3: parent, uncle are red

3

1 5

8

before:

case 3: parent, uncle are red:
grandparent becomes red
parent/uncle black

case 3 (parent, uncle are red) continued:
recusively examine grandparent 3
case 5: parent (of 3) is red

uncle is black, left child

100

10

3

… …

15

200

case 5: parent is red
uncle is black, left child:

perform right rotation
of parent + grandparent (of 3)
(and swap parent/grandparent colors)

75

example recursive case

100

10

3

1 5

8

15

200

10

3

1 5

8

100

15 200

initially:
leaves are black X
red node’s children are black X
same number of black nodes
in every path from node to leaves X

insert 8
initially make red
case 3: parent, uncle are red

3

1 5

8

before:

case 3: parent, uncle are red:
grandparent becomes red
parent/uncle black

case 3 (parent, uncle are red) continued:
recusively examine grandparent 3
case 5: parent (of 3) is red

uncle is black, left child

100

10

3

… …

15

200

case 5: parent is red
uncle is black, left child:

perform right rotation
of parent + grandparent (of 3)
(and swap parent/grandparent colors)

75

example recursive case

100

10

3

1 5

8

15

200

10

3

1 5

8

100

15 200

initially:
leaves are black X
red node’s children are black X
same number of black nodes
in every path from node to leaves X

insert 8
initially make red
case 3: parent, uncle are red

3

1 5

8

before:

case 3: parent, uncle are red:
grandparent becomes red
parent/uncle black

case 3 (parent, uncle are red) continued:
recusively examine grandparent 3
case 5: parent (of 3) is red

uncle is black, left child

100

10

3

… …

15

200

case 5: parent is red
uncle is black, left child:

perform right rotation
of parent + grandparent (of 3)
(and swap parent/grandparent colors)

75

example recursive case

100

10

3

1 5

8

15

200

10

3

1 5

8

100

15 200

initially:
leaves are black X
red node’s children are black X
same number of black nodes
in every path from node to leaves X

insert 8
initially make red
case 3: parent, uncle are red

3

1 5

8

before:

case 3: parent, uncle are red:
grandparent becomes red
parent/uncle black

case 3 (parent, uncle are red) continued:
recusively examine grandparent 3
case 5: parent (of 3) is red

uncle is black, left child

100

10

3

… …

15

200

case 5: parent is red
uncle is black, left child:

perform right rotation
of parent + grandparent (of 3)
(and swap parent/grandparent colors)

75

example recursive case

100

10

3

1 5

8

15

200

10

3

1 5

8

100

15 200

initially:
leaves are black X
red node’s children are black X
same number of black nodes
in every path from node to leaves X

insert 8
initially make red
case 3: parent, uncle are red

3

1 5

8

before:

case 3: parent, uncle are red:
grandparent becomes red
parent/uncle black

case 3 (parent, uncle are red) continued:
recusively examine grandparent 3
case 5: parent (of 3) is red

uncle is black, left child

100

10

3

… …

15

200

case 5: parent is red
uncle is black, left child:

perform right rotation
of parent + grandparent (of 3)
(and swap parent/grandparent colors)

75

example recursive case

100

10

3

1 5

8

15

200

10

3

1 5

8

100

15 200

initially:
leaves are black X
red node’s children are black X
same number of black nodes
in every path from node to leaves X

insert 8
initially make red
case 3: parent, uncle are red

3

1 5

8

before:

case 3: parent, uncle are red:
grandparent becomes red
parent/uncle black

case 3 (parent, uncle are red) continued:
recusively examine grandparent 3
case 5: parent (of 3) is red

uncle is black, left child

100

10

3

… …

15

200

case 5: parent is red
uncle is black, left child:

perform right rotation
of parent + grandparent (of 3)
(and swap parent/grandparent colors)

75

RB-tree: removal

start with normal BST remove of x, but…

instead find next highest/lowest node y
can choose node with at most one child
(“bottom” of a left or right subtree)

swap x and y’s value, then replace y with its child

several cases for color maintainence/rotations

76

RB tree: removal cases

N: node just replaced with child; S: its sibling; P: its parent

(1): N is new root
(2): S is red
(3): P, S, and S’s children are black
(4): S and S’s children are black
(5): S is black, S’s left child is red, S’s right child is black, N is
left child of P
(6): S is black, S’s right child is red, N is left child

details: see, e.g., Wikipedia article 77

why red-black trees?

a lot more cases…but

a lot less rotations

…because tree is kept less rigidly balanced

red-black trees end up being faster in practice

78

more balanced trees

several other kinds of balanced trees

one notable kind: non-binary balanced trees

commonly used in databases
more efficient to store multiple nodes together on disk/SSD

79

splay trees

tree that’s fast for recently used nodes

self-balancing binary search tree

keeps recent nodes near the top

simpler to implement than AVL or RB trees

80

‘splaying’

every time node is accessed (find, insert, delete)…

“splay” tree around that node

make the node the new tree root

Θ(h) time — where h is tree height

worst-case height: Θ(n) — linked-list case

81

‘splaying’

every time node is accessed (find, insert, delete)…

“splay” tree around that node

make the node the new tree root

Θ(h) time — where h is tree height

worst-case height: Θ(n) — linked-list case

81

‘splaying’

every time node is accessed (find, insert, delete)…

“splay” tree around that node

make the node the new tree root

Θ(h) time — where h is tree height
worst-case height: Θ(n) — linked-list case

81

splay tree operations

3

2

1

4

3

2

1

2

1 3

4

insert 4 find 2

82

amortized complexity

splay tree insert/find/delete is amortized O(log n) time

informally: average insert/find/delete: O(log n)

more formally: m operations: O(m log n) time (where n: max size
of tree)

83

splay tree pro/con

can be faster than AVL, RB-trees in practice
take advantage of frequently accessed items

simpler to implement

but worst case find/insert is Θ(n) time

84

last time

red-black trees
less well-balanced than AVL trees
track color instead of balance factor
rules about colors to limit possible imbalance
algorithm for insertion, etc. that makes tree always obey rules
usually faster in practice — less rotations

splay trees
optimized for repeated accesses
keep recently accessed items near top of tree
find rearranges tree!
amortized logarithmic time
(but worst case is linear)

85

amortized analysis: vector growth

vector insert algorithm:
if not big enough, double capacity
write to end of vector

doubling size — requires copying! — Θ(n) time

Θ(n) worst case per insert

but average…?

86

amortized analysis: vector growth

vector insert algorithm:
if not big enough, double capacity
write to end of vector

doubling size — requires copying! — Θ(n) time

Θ(n) worst case per insert

but average…?

86

counting copies (1)

suppose initial capacity 100 + insert 1600 elements
100 → 200: 100 copies
200 → 400: 200 copies
400 → 800: 400 copies
800 → 1600: 800 copies
total: 1500 copies

total operations: 1500 copies + 1600 writes of new elements
about 2 operations per insert

87

counting copies (2)

more generally: for N inserts

about N copies + N writes
why? K to 2K elements: K copies
N inserts: 1 + 2 + 4 + . . . + N/4 + N/2 = N − 1 copies
(and a bit better if initial capacity isn’t 1)

Θ(n) worst case

but Θ(n) time for n inserts

→ O(1) amortized time per insert

88

counting copies (2)

more generally: for N inserts

about N copies + N writes
why? K to 2K elements: K copies
N inserts: 1 + 2 + 4 + . . . + N/4 + N/2 = N − 1 copies
(and a bit better if initial capacity isn’t 1)

Θ(n) worst case

but Θ(n) time for n inserts

→ O(1) amortized time per insert

88

other vector capacity increases? (1)

instead of doubling…add 1000

N inserts: 1000 + 2000 + 3000 + . . . + N ∼ N2

→ Θ(N2) total — O(N) amortized time per insert

increase by constant: linear worst-case and amortized

89

other vector capacity increases? (1)

instead of doubling…add 1000

N inserts: 1000 + 2000 + 3000 + . . . + N ∼ N2

→ Θ(N2) total — O(N) amortized time per insert

increase by constant: linear worst-case and amortized

89

instead of doubling…multiply by k > 1
e.g. k = 1.1 — increase by 10%

N inserts: 1 + k + k2 + k3 + . . . + klogk N = 1 − klogk N

1 − k
∼ N

→ Θ(N) total — O(1) amortized time per insert
amortized constant time for all k > 1

90

instead of doubling…multiply by k > 1

e.g. k = 1.1 — increase by 10%

N inserts: 1 + k + k2 + k3 + . . . + klogk N = 1 − klogk N

1 − k
∼ N

→ Θ(N) total — O(1) amortized time per insert
amortized constant time for all k > 1

90

instead of doubling…multiply by k > 1

e.g. k = 1.1 — increase by 10%

N inserts: 1 + k + k2 + k3 + . . . + klogk N = 1 − klogk N

1 − k
∼ N

→ Θ(N) total — O(1) amortized time per insert
amortized constant time for all k > 1

90

trees are not great for…

ordered, unsorted lists

list of TODO tasks

being easy/simple to implement

compare, e.g., stack/queue

Θ(1) time

compare vector

compare hashtables (almost)

91

programs as trees

int z;

int foo (int x) {
for (int y = 0;

y < x;
y++)

cout << y << endl;
}

int main() {
int z = 5;
cout << "enter x" << endl;
cin >> z;
foo(z);

}

program

vars

int z

functions

foo()

params

int z

vars body

for

int y y < x y++ body

cout

y endl

main()

params vars

int z

=5

body

cout

"enter z" endl

cin

z

foo()

z

92

programs as trees

int z;

int foo (int x) {
for (int y = 0;

y < x;
y++)

cout << y << endl;
}

int main() {
int z = 5;
cout << "enter x" << endl;
cin >> z;
foo(z);

}

program

vars

int z

functions

foo()

params

int z

vars body

for

int y y < x y++ body

cout

y endl

main()

params vars

int z

=5

body

cout

"enter z" endl

cin

z

foo()

z

92

abstract syntax tree

program

vars

int z

functions

foo()

params

int z

vars body

for

int y y < x y++ body

cout
y endl

main()

params vars

int z

=5

body

cout

"enter z" endl

cin

z

foo()

z

for loop: four children
init, condition, update, body

class ASTNode {
...

};

// public class ForNode extends ASTNode
class ForNode : public ASTNode {

...
private:

ASTNode *init, *condition,
*update, *body;

};

93

abstract syntax tree
program

vars

int z

functions

foo()

params

int z

vars body

for

int y y < x y++ body

cout
y endl

main()

params vars

int z

=5

body

cout

"enter z" endl

cin

z

foo()

z

for loop: four children
init, condition, update, body

class ASTNode {
...

};

// public class ForNode extends ASTNode
class ForNode : public ASTNode {

...
private:

ASTNode *init, *condition,
*update, *body;

};

93

abstract syntax tree
program

vars

int z

functions

foo()

params

int z

vars body

for

int y y < x y++ body

cout
y endl

main()

params vars

int z

=5

body

cout

"enter z" endl

cin

z

foo()

z

for loop: four children
init, condition, update, body

class ASTNode {
...

};

// public class ForNode extends ASTNode
class ForNode : public ASTNode {

...
private:

ASTNode *init, *condition,
*update, *body;

};

93

AST applications

“abstract syntax tree” = “parse tree”

part of how compilers work

do some tree traversal to do…

code generation — e.g. ASTNode::outputCode() method

optimization

type checking…

94

using AST to compare programs

comparing trees is a good way to compare programs…
while ignoring:

function/method order (e.g. sort function nodes by length)

variable names (e.g. ignore variable names when comparing)

comments

…

part of many software plagerism/copy+paste detection tools
95

	why trees?
	tree vocabulary
	firstChild/nextSibling representation
	types of tree traversals
	expression trees
	binary trees and binary search tree
	binary trees
	binary search trees
	binary search tree algorithms
	binary tree heights

	AVL trees
	introduction
	AVL algorithms (intro)
	simple rotations
	double rotation
	insert cases revisited
	runtime

	red-black trees
	splay trees
	amortized vector analysis
	tree applications
	don't use trees if…
	trees for program analysis

