trees

are lists enough?

for correctness — sure

want to efficiently access items
better than linear time to find something

want to represent relationships more naturally

inter-item relationships in lists

List: nodes related to predecessor/successor

trees

trees: allow representing more relationships
(but not arbitrary relationships — see graphs later in semester)

restriction: single path from root to every node

implies single path from every node to every other node (possibly
through root)

natural trees: phylogenetic tree

\% b
vl

|
f:’:‘ss [

P < il

7 i

QW
Nt

allk
RO
A
3

|

image: lvﬁ:unic and Mariana Ruiz Villarreal, via the tool iTOL (Interative Tree of Life), via Wikipedia

e
& 7
ﬁ@éﬁjf?ﬁ'ﬁjgg;zg;

phylogenetic tree (zoom)

natural trees

ustris

. - ﬁ:oaocwocaoaosmm pal

R mae_.zwozca mmcoanca
‘‘‘‘‘ Rhizobium meli
‘‘‘‘‘ - - Agrobacterium tumefaciens Cereon

ti

“““““ ‘Agrobacterium tumefaciens WashU

“““““““““ 0] wniqoziuy
- - - sins ejeong

- - Sisueyjaw ejjsonug

e tool iTOL (Interative Tree of Life), via Wikipedia

-Boedoung Seuowsosoy
- - -Wnaogiopn .

Z BT
) HeBGowo

lvicia Letunic and Mariana

image:

)
2

o

gsche!

natural trees: Indo-European languages

image: via Wikipedia/Mandrak 7

list to tree

list — up to 2 related nodes

Y

predecessor

element

——»| SUCCESSOor

binary tree — up to 3 related nodes (list is special-case)

parent

Y

element

left child

N

left child

more general trees

tree — any number of relationships (binary tree is special case)
at most one parent

parent

Y
element

Y

child 1 child 2 child n

tree terms (1)

/N

C

parent —» child

A |<«—— root: node with no parents

siblings: nodes with the same parent

F G

leafs: nodes with no children

10

paths and path lengths

A| path: sequence of nodes ni,no, ..., n;

/ \ such that n; is parent of n;;1
example: {B, D, H}

B : \
D E F G
Y length (of path): number of edges in path
H example: 2 (B — D and D — H)

internal path length: sum of depth of nodes

example: 6 =1+2+ 3
11

tree/node height

parent —» child

Al3
/ \ height (of a node): length of longest path to leaf
B|2 1
/ / height (of a tree): height of tree's root
(this example: 3)
D1 F|0 G|O

tree/node depth

A

Y%

parent —» child

depth (of a node): length of path to root

1

\
/

A

F|2 G|2

13

first child/next sibling

home
class TreeNode {
private: il
string element;
TreeNode *firstChild; [g%on
TreeNode *nextSibling; cla
public: g VnextS1‘b11ng
. cs2150 > cs4970 > mail
b firstchild-]
labl lab2 > projl
Y \ 4
coll.h »| coll.cpp proj.h

14

another tree representations

class TreeNode {
private:
string element;
vector<TreeNode *> children;
public:
b

// and more —--- see when we talk about graphs

15

tree traversal

g
@@@;?;Q @@ .

pre-order: / * + 1 2 - 3 4 x5 6
in-order: (((1+2) * (3-4)) / (5%6)) (parenthesis optional?)
post-order: 1 2 + 3 4 - * 5 6 % /

16

pre/post-order traversal printing

(this is pseudocode)

TreeNode: :printPreOrder () {
this—>print();
for each child c of this:
c—>printPreOrder ()

}

TreeNode: :printPostOrder () {
for each child c of this:
c—>printPostOrder ()
this—>print();

17

in-order traversal printing

(this is pseudocode)

BinaryTreeNode: :printInOrder() {
if (this—>left)
this—>left—>printInOrder();
cout << this—>element << "_";
if (this—>right)
this—>right—>printInOrder();

18

post-order traversal counting

(this is pseudocode)

int numNodes(TreeNode *tnode) {
if (tnode == NULL)
return 0;
else {
sum=0;
for each child c of tnode
sum += numNodes(c);
return 1 + sum;

19

expression tree and traversals

) (a+ ((b+c)*d)
@ ()

20

expression tree and traversals

Q infix. (a + ((b + ¢c) % d))
@ postfix: a b ¢ + d * +

prefix: + a x + b ¢ d
(+) ()
(b) ()

21

postfix expression to tree

use a stack of trees

number n — push((n))

operator OP —
pop into A, B; then

push
B A

22

example

ab+cde+ x %

23

example

ab+cde+ x %

top of stack
A

=

23

example

ab+cde+ x %

top of stack
A

23

example

ab+cde+ x %

top of stack
A

)
;ﬁ@@@

23

example

ab+cde+ x %

@@C@

©

top of stack
A

23

example

ab+cde+ x %

&
Nofe

top of stack
A

23

example

ab+cde+ x %

&
Nofe
o
olO

() 9
nalONORONCO
ONG

23

binary trees

all nodes have at most 2 childre

class BinaryNode {

int element;

BinaryNode *left;

BinaryNode *right;
s

24

binary trees

all nodes have at most 2 childre

class BinaryNode {

int element;

BinaryNode *left;

BinaryNode *right;
s

element =2
left = NULL
right = addr of node 3

24

binary trees

all nodes have at most 2 childre

class BinaryNode {

int element;

BinaryNode *left;

BinaryNode *right;
s

3
OIOROIO

element =7
left = NULL
right = NULL

24

binary search trees

binary tree and...

each node has a key

for each node:
keys in node's left subtree are less than node's
keys in node's right subtree are greater than node's

4)

2] 5
@ @

25

binary search trees

binary tree and..

each node has a key

for each node:

keys in node's left subtree are less than node's
keys in node's right subtree are greater than node's

Jol

oy

O3

left subtree of 4

right subtree of 4

25

binary search trees

binary tree and..

each node has a key

for each node:
keys in node's left subtree are less than node's
keys in node's right subtree are greater than node's

(4)
2] ®

o B

right subtree of 5

25

not a binary search tree

26

binary search tree versus binary tree

binary search trees are a kind of binary tree

..but — often people say “binary tree” to mean “binary search tree”

27

BST: find

(pseudocode)

find(node, key) {
if (node == NULL)
return NULL;
else if (key < node—>key)
return find(node—>left, key)
else if (key > node—>key)
return find(node—>right, key)
else // if (key == node->key)
return node;

28

BST: insert

(pseudocode)

insert(Node *&node, key) {

if (node == NULL)
node = new BinaryNode(key);

else if (key < node—>key)
insert(node—>left, key);

else if (key < root—>key)
insert(node—>right, key);

else // if (key > root->key)
;5 // duplicate -- no new node needed

29

BST: findMin

(pseudocode)

findMin(Node *node, key) {
if (node—>1left == NULL)
return node;
else

insert(node—>left, key);

30

BST: remove (1)

case 1: no children

@@4'@ —

31

BST: remove (2)

case 2: one child

@

/@\

32

BST: remove (3)

case 3: two children

L~
\
! \ q
! /
N

replace with minimum of right subtree
(alternately: maximum of left subtree, ...)

33

binary tree: worst-case height

n-node BST: worst-case height/depth n — 1

34

binary tree: best-case height

height h: at most 21 — 1 nodes

oy

35

binary tree: proof best-case height is possible

2h+1

proof by induction: can have — 1 nodes in h-height tree

h = 0: h = 0: exactly one node; 2" — 1 = 1 nodes

h=k—>h=k+1:
start with two copies of a maximum tree of height £

create a new tree as follows:
create a new root node
add edges from the root node to the roots of the copies

the height of this new tree is k + 1
path of length k in old tree + either new edge

the number of nodes is
r\/r\l{‘#‘l “T \ N “ nk+1+1 ~ . “ r\l{'#‘] 4»1

binary tree: best-case height is best

(informally)

property of trees in root:
except for the leaves, every node in tree has 2 children

no way to add nodes without increasing height

add below leaf — longer path to root — longer height
add above root — every old node has longer path to root

37

binary tree height formula

n: number of nodes

h: height
n+1 < 2h+1
logs(n+1) < log, (2h+1)
log(n+1) < h+1
ho> log,(n+1)—1

shortest tree of n nodes: ~ log,(n) height

38

perfect binary trees

a binary tree is perfect if

all leaves have same depth
all nodes have zero children (leaf) or two children

exactly the trees that achieve 2" — 1 nodes

39

AVL animation tool

http://webdiis.unizar.es/asignaturas/EDA/
AVLTree/avltree.html

40

http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html
http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html

AVL tree idea

AVL trees: one of many balanced trees —

search tree balanced to keep height O(logn)
avoid “tree is just a long linked list” scenarios

gaurentees O(log n) for find, insert, remove

AVL = Adelson-Velskii and Landis

41

AVL gaurentee

the height of the left and right subtrees of every node differs by at
most one

42

AVL state

normal binary search tree stuff:
data; and left, right, parent pointers

additional AVL stuff:
height of right subtree minus height of left subtree

called “balance factor”
-1, 0, +1

(kept up to date on insert/delete — computing on demand is too slow)

43

example AVL tree

44

example AVL tree

44

example non-AVL tree

45

AVL tree algorithms

find — exactly the same as binary search tree
just ignore balance factors

insert — two extra steps:

update balance factors
“fix" tree if it became unbalanced

46

AVL tree algorithms

find — exactly the same as binary search tree
just ignore balance factors

insert — two extra steps:

update balance factors
“fix" tree if it became unbalanced

runtime for both ©(d) where d is depth of node found/inserted
max balance factor 1 at root
max depth of node is O(logyn + 1) = O(logn)

46

AVL insertion cases

simple case: tree remains balanced

otherwise:

let be deepest imbalanced node (+2/-2 balance factor)
insert in left subtree of left child of x: single rotation right
insert in right subtree of right child of x: single rotation left
insert in right subtree of left child of x: double left-right rotation
insert in left subtree of right child of x: double right-left rotation

47

AVL: simple right rotation

just inserted 0
unbalanced root becomes new left child

s

48

AVL: less simple right rotation (1)

just inserted 0
unbalanced root becomes new left child

SIONI®N®
1

b: 0 49

AVL: simple left rotation

just inserted 1
deepest unbalanced node is 3

SOA®

50

AVL rotation: up and down

at least one node moves up (this case: 1 and 2)
at least one node moves down (this case: 3)

51

AVL: less simple right rotation (2)

just inserted 1

52

AVL: less simple right rotation (2)

just inserted 1

&
&
ad
&
&
&
N
N

N
R
R
L
od
N
R
N
L
od
N
N
04
N
&d
N

!‘

deepest unbalanced subtree

52

AVL: less simple right rotation (2)

just inserted 1

g‘

deepest unbalanced subtree

52

AVL: less simple right rotation (2)

just inserted 1

N
&d
N
ad
N
ad
&d
ad

AR R RRRRRRRRERN] .

52

general single rotation

rotate
right
—

A

rotate
left h+1
[—

il

X<bgY<a<Z

N/

53

double rotation

double rotation

step 1: rotate left
step 2: rotate imbalanced tree right

15
b: -1

(o) (&)
So @

@

double rotation

step 1: rotate left
step 2: rotate imbalanced tree right

left

step 2: rotate imbalanced tree right

double rotation [sep 1. rotate

general double rotation

55

general double rotation

A
A A

rotate

W<b< X<e<Y</Z

¢ becomes root, so its children
X and Y both switch parents

55

double rotation names

sometimes “double left”
first rotation left, or second?

us: “double left-right”

rotate child tree left
rotate parent tree right

“double right-left”

rotate child tree right
rotate parent tree left

56

AVL insertion cases

simple case: tree remains balanced

otherwise:

let be deepest imbalanced node (+2/-2 balance factor)
insert in left subtree of left child of x: single rotation right
insert in right subtree of right child of x: single rotation left
insert in right subtree of left child of x: double left-right rotation
insert in left subtree of right child of x: double right-left rotation

57

AVL insert cases (revisited)

-~
-’
4

.
|' 1 ‘I

‘\ b: O I’
s\ f’

single left

1
' b:
-~

.

1
4
’
-

single right

I"’ 2 ‘I
‘\ b: I’
left-right

AN
’ 2 A

-
,

~

’

-

b: !
A . 4
~
~

right-left

58

AVL insert cases (revisited)

-

,

-~ -
-’ ~ ,

II' 1 \\I |" 3 \\I II' 2 \\I Il' 2 \\I
‘\\ b: O ¢l’ ‘\ b: I’ “\ b: " ‘\ b: l'
single left single right left-right right-left

choose rotation based on lowest imbalanced node
and on direction of insertion
(inserted node is green+dashed) 58

AVL insert case: detail (1)

I'l’ 1 \‘I
‘\b: 0','
--=-%_ choose rotation based on
II 1 \I .
‘b 0. lowest imbalanced node
""" and on direction of insertion

(inserted node is green-dashed)

59

AVL insert case: detail (2)

3)
e b o) choose using

lowest imbalanced node

(b-OO \ @ @ and on direction of insertion

(inserted node is

@ @ @ green+dashed)

60

There are 4 cases in
all, choosing which
one is made by
seeing the direction
of the first 2 nodes
from the unbalanced
node to the newly
inserted node and
matching them to
the top most row.

Root is the initial
parent before a
fotation and Pivot is
the child to take the
foots place

Left Left Case

Right Right Case

Left Right Case

Right Left Case

Root = Root
(\ y AN
Pivot /A
Root
3 (5
(R)
Pivot
Right Left Left Right
Rotation Rotation Rotation Rotation
N\
Pivot AN /A . Pivot
/ \
‘l AL
Right Leit
Rotation Rotation
5
5
A Ao A /o ‘/V Tﬁ
/Al B N

61

AVL tree: runtime

worst depth of node: O(log, n + 2) = O(logn)
find: O(logn)

worst case: traverse from root to worst depth leaf
insert: O(logn)
worst case: traverse from root to worst depth leaf

then back up (update balance factors)
then perform constant time rotation

remove: O(logn)
left as exercise (similar to insert)
print: ©O(n)

visit each of n nodes

62

other types of trees

many kinds of balanced trees
not all binary trees
different ways of tracking balance factors, etc.

different ways of doing tree rotations or equivalent

63

red-black trees

each node is red or black
null leafs considered nodes to aid analysis (still null pointers...)
rules about when nodes can be red/black gaurentee maximum depth

13

11 15 /e\
NULL NULL NULL NULL NULL @ ﬂ
NULL NULL NULL NULL

NULL NULL

64

red-black tree rules

root is black

counting null pointers as nodes, leaves are black

a red node’s children are black
— a red node’s parents are black

every simple path from node to leaf under it contains same number
of black nodes

(property holds regardless of whether null pointers are considered nodes)

65

worst red-black tree imbalance

same number of black nodes on paths to leaves
— factor of 2 imbalance max

66

red-black insert

default: insert as red (no change to black node count), but..
(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4)

4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

67

red-black insert

default: insert as red (no change to black node count), but..

(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors
(4)

4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent i property: “children of red node are black”
perform a | no change in # of black nodes on paths

68

red-black insert

default: insert as red (no change to black node count), but..
(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4)

4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

69

case 3: parent, uncle are red

make grandparent red, parent and uncle black
(property: every path to leaf has same number of black nodes)
just swapped grandparent and parent/uncle in those paths

image: Wikipedia/Abloomfi 70

case 3: parent, uncle are red

make grandparent red, parent and uncle black
(property: every path to leaf has same number of black nodes)
just swapped grandparent and parent/uncle in those paths

but..what if grandparent’s parent is red?
(property: children of red node are black)
solution: recurse to the grandparent, as if it was just inserted

image: Wikipedia/Abloomfi 70

case 3: parent, uncle are red

make grandparent red, parent and uncle black
(property: every path to leaf has same number of black nodes)
just swapped grandparent and parent/uncle in those paths

but..what if grandparent’s parent is red?
(property: children of red node are black)
solution: recurse to the grandparent, as if it was just inserted

image: Wikipedia/Abloomfi 70

red-black insert

default: insert as red (no change to black node count), but..
(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4)

4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

71

case 4: parent red, uncle black, right child

perform left rotation on parent subtree and new node

now case 5 (but new node is P, not N)

image: Wikipedia/Abloomfi 72

red-black insert

default: insert as red (no change to black node count), but..
(1) if new node is root: color black

(2) if parent is black: keep child red

(3) if parent and uncle is red: adjust several colors

(4)

4) if parent is red, uncle is black, new node is right child
perform a rotation, then go to case 5

(5) if parent is red, uncle is black, new node is left child
perform a rotation

73

case b: parent red, uncle black, left child

perform right rotation of grandparent and parent

swap colors of parent and grandparent

preserves properties:
red parent’s children are black
every path to leaf has same number of black nodes

image: Wikipedia/Abloomfi 74

example recursive case

initially:

leaves are black v/

red node’s children are black v
same number of black nodes

in every path from node to leaves v

75

example recursive case

insert 8
initially make red

case 3: parent, uncle are red

75

example recursive case

case 3: parent, uncle are red:
grandparent becomes red
parent/uncle black

beforf/

75

example recursive case

case 3 (parent, uncle are red) continued:
recusively examine grandparent 3
case 5: parent (of 3) is red

uncle is black, left child

75

example recursive case

case 5: parent is red
uncle is black, left child:
perform right rotation
of parent + grandparent (of 3)
(and swap parent/grandparent colors)

_>

75

example recursive case

75

RB-tree: removal

start with normal BST remove of z, but...

instead find next highest/lowest node y

can choose node with at most one child
(“bottom” of a left or right subtree)

swap x and y's value, then replace y with its child

several cases for color maintainence/rotations

76

RB tree: removal cases
N: node just replaced with child; S: its sibling; P: its parent

(1): N is new root
(2): S'is red
(3): P,'S, and S’s children are black
(4): S and S’s children are black
(5)

t

: S is black, S's left child is red, S’s right child is black, N is
left child of P

(6): S is black, S's right child is red, N is left child

B D \ V. VA DI LT e

7

why red-black trees?

a lot more cases...but

a lot less rotations

..because tree is kept less rigidly balanced

red-black trees end up being faster in practice

78

more balanced trees

several other kinds of balanced trees

one notable kind: non-binary balanced trees

commonly used in databases
more efficient to store multiple nodes together on disk/SSD

79

splay trees

tree that's fast for recently used nodes
self-balancing binary search tree

keeps recent nodes near the top

simpler to implement than AVL or RB trees

80

‘splaying’
every time node is accessed (find, insert, delete)...

“splay” tree around that node

make the node the new tree root

81

‘splaying’
every time node is accessed (find, insert, delete)...

“splay” tree around that node

make the node the new tree root

©(h) time — where h is tree height

81

‘splaying’

every time node is accessed (find, insert, delete)...

“splay” tree around that node

make the node the new tree root

©(h) time — where h is tree height
worst-case height: ©(n) — linked-list case

81

splay tree operations

@ insert 4

NG

»
>

find 2

.

@@@

82

amortized complexity

splay tree insert/find/delete is amortized O(logn) time
informally: average insert/find/delete: O(logn)

more formally: m operations: O(mlogn) time (where n: max size
of tree)

83

splay tree pro/con

can be faster than AVL, RB-trees in practice
take advantage of frequently accessed items

simpler to implement

but worst case find/insert is ©(n) time

84

last time

red-black trees

less well-balanced than AVL trees

track color instead of balance factor

rules about colors to limit possible imbalance

algorithm for insertion, etc. that makes tree always obey rules
usually faster in practice — less rotations

splay trees

optimized for repeated accesses

keep recently accessed items near top of tree
find rearranges tree!

amortized logarithmic time

(but worst case is linear)

85

amortized analysis: vector growth

vector insert algorithm:

if not big enough, double capacity
write to end of vector

86

amortized analysis: vector growth

vector insert algorithm:

if not big enough, double capacity
write to end of vector

doubling size — requires copying! — ©(n) time
©(n) worst case per insert

but average...”

86

counting copies (1)

suppose initial capacity 100 + insert 1600 elements

100 — 200: 100 copies
200 — 400: 200 copies
400 — 800: 400 copies
800 — 1600: 800 copies
total: 1500 copies

total operations: 1500 copies 4+ 1600 writes of new elements
about 2 operations per insert

87

counting copies (2)

more generally: for NV inserts

about NV copies + N writes

why? K to 2K elements: K copies
Ninserts: 1+2+4+ ...+ N/4+ N/2 =N — 1 copies
(and a bit better if initial capacity isn't 1)

88

counting copies (2)

more generally: for NV inserts

about NV copies + N writes

why? K to 2K elements: K copies
Ninserts: 1+2+4+ ...+ N/4+ N/2 =N — 1 copies
(and a bit better if initial capacity isn't 1)

©(n) worst case
but ©(n) time for n inserts

— O(1) amortized time per insert

88

other vector capacity increases? (1)

instead of doubling...add 1000
N inserts: 1000 + 2000 + 3000 + ... + N ~ N?

— O(N?) total — O(N) amortized time per insert

89

other vector capacity increases? (1)

instead of doubling...add 1000
N inserts: 1000 + 2000 + 3000 + ... + N ~ N?

— O(N?) total — O(N) amortized time per insert

increase by constant: linear worst-case and amortized

89

instead of doubling..multiply by £ > 1
e.g. k=1.1 — increase by 10%

90

instead of doubling..multiply by £ > 1

e.g. k= 1.1 — increase by 10%

Ninserts: 1 +k+ k> 4+ k%4 4 kloseN —

1 — klogkN

1—-k

~ N

90

instead of doubling..multiply by £ > 1

e.g. k=1.1 — increase by 10%
N inserts: 1+ k4 k> + k> + ...+ ks N = T x
— O(N) total — O(1) amortized time per insert

amortized constant time for all k£ > 1

1 — klogkN

~ N

90

trees are not great for...

ordered, unsorted lists

list of TODO tasks

being easy/simple to implement
compare, e.g., stack/queue

O(1) time

compare vector

compare hashtables (almost)

91

programs as trees

int z;

int foo (int x) {
for (int y = 03

cout << y << endl;

}

int main() {
int z = 53
cout << "enter x" << endl;
cin >> z;
foo(z);

programs as trees

int z;

int foo (int x) {
for (int y = 03

cout << y << endl;

}

int main() {
int z = 53
cout << "enter x" << endl;
cin >> z;
foo(z);

abstract syntax tree

93

abst

Gt 2
@y

ract syntax tree

for loop: four children
init, condltlon update, body [

cﬂb@@

@

7

CendD Tz > z>

93

abstract syntax tree

W
Gnt 2> (foo())

for loop: four children
Cparams> init, condition, update, body Y

Gnt <> L oo o TEoN
class ASTNode {
CDTD @D &D|,, -
b
Ccout>

// public class ForNode extends ASTNode
<:::> €N class ForNode : public ASTNode {

private:
ASTNode *init, *condition,
*update, *body;
}s

93

AST applications

“abstract syntax tree” = “parse tree”

part of how compilers work

do some tree traversal to do..
code generation — e.g. ASTNode: :outputCode () method
optimization

type checking...

94

using AST to compare programs

comparing trees is a good way to compare programs...
while ignoring:

function/method order (e.g. sort function nodes by length)
variable names (e.g. ignore variable names when comparing)

comments

part of many software plagerism/copy-+paste detection tools

95

	why trees?
	tree vocabulary
	firstChild/nextSibling representation
	types of tree traversals
	expression trees
	binary trees and binary search tree
	binary trees
	binary search trees
	binary search tree algorithms
	binary tree heights

	AVL trees
	introduction
	AVL algorithms (intro)
	simple rotations
	double rotation
	insert cases revisited
	runtime

	red-black trees
	splay trees
	amortized vector analysis
	tree applications
	don't use trees if…
	trees for program analysis

