heaps and Huffman codes

priority queues: motivation

dynamically changing list of events with dates
want to find next event quickly

list of running programs, some more important (e.g. what user will
notice being slow)

choose most important to run first
want to find most important quickly

list of connections, some interactive (video call), some not
(download)

want quick way to choose which one to service

data structure: priority queue

priority queue ADT

insert(priority, item)
findMin() — return item with lowest (first) priority

deleteMin() — remove item with lowest (first) priority

priority queue implementations

structure

unsorted vector
unsorted linked list
sorted vector

sorted linked list
balanced tree

binary heap
Fibannoci heap
strict Fibannoci heap

insert
©(1) (amortized)
o(1)

O(logn)
amortized ©(1)
o(1)

deleteMin

O(logn)
amortized O (logn)
O(logn)

priority queue implementations

structure

unsorted vector
unsorted linked list
sorted vector

sorted linked list
balanced tree

binary heap
Fibannoci heap
strict Fibannoci heap

insert
©(1) (amortized)
o(1)

O(logn)
amortized ©(1)
o(1)

deleteMin

O(logn)
amortized O (logn)
O(logn)

priority queue implementations

structure

unsorted vector
unsorted linked list
sorted vector

sorted linked list
balanced tree

binary heap
Fibannoci heap
strict Fibannoci heap

insert
©(1) (amortized)
o(1)

O(logn)
amortized O(1)
o(1)

deleteMin

O(logn)
amortized ©(logn)
O(logn)

additional, optional operations

not necessary to have a priority queue, but useful...

decreaseKey — change value of key given index/pointer
remove — remove value with given index/pointer

structure

unsorted vector
unsorted linked list
sorted vector

sorted linked list
balanced tree

binary heap
Fibannoci heap
strict Fibannoci heap

decreaseKey remove

O(1) O(n)

O(1) O(n)

O(n) O(n)

O(n) O(1)

O(logn) O(logn)
©(logn) O(logn)
amortized ©(1) amortized O(1)
O(1) O(1)

additional, optional operations

not necessary to have a priority queue, but useful...

decreaseKey — change value of key given index/pointer
remove — remove value with given index/pointer

structure

unsorted vector
unsorted linked list
sorted vector

sorted linked list
balanced tree

binary heap
Fibannoci heap
strict Fibannoci heap

decreaseKey remove

O(1) O(n)

O(1) O(n)

O(n) O(n)

O(n) O(1)

O(logn) O(logn)
©(logn) ©(logn)
amortized ©(1) amortized O(1)
O(1) O(1)

additional, optional operations

not necessary to have a priority queue, but useful...

decreaseKey — change value of key given index/pointer
remove — remove value with given index/pointer

structure decreaseKey remove
unsorted vector O(1) O(n)

unsorted linked list | ©(1) O(n)

sorted vector O(n) O(n)

sorted linked list O(n) O(1)

balanced tree O©(logn) O(logn)
binary heap ©(logn) O(logn)
Fibannoci heap amortized ©(1) amortized O(1)
strict Fibannoci heap | O(1) O(1)

aside: min v max

can also have ADT with findMax/etc. instead of findMin/etc.
same complexities, etc. (use different comparisons)

terms for heaps: “"min-heap” (findMin version) or “max-heap”
(findMax version)

binary heaps

binary heap is a binary tree
binary tree is not a binary search tree
structure: almost a perfect tree

ordering: parent < child (everywhere in tree)

perfect binary trees

a binary tree is perfect or complete if

all leaves have same depth
all nodes have zero children (leaf) or two children

exactly the trees that achieve 2" — 1 nodes

almost perfect/complete binary trees

J O

heaps are almost complete trees

only missing bottom-rightmost slots

almost perfect/complete binary trees

heaps are almost complete trees

only missing bottom-rightmost slots

almost complete formally

single node tree is almost complete

otherwise: almost complete if either

left child is complete with height A and right child almost complete with
height h; OR

left child is almost complete with height A and right child is complete
with height h — 1

O O

10

trees as arrays

node
index

©)

ABICDIEIFIGHI [J
01231415 167 819 |10[11]12(13/14]15]16
string theTree[l17] = {"", "A", "B",}

11

trees as arrays

parentIndex = index / 2

leftChild = index * 2
X/g::l\\ rightChild = index * 2 + 1

vy _|v |
node [_JAIBICIDIEF G IH]I |J
index [0 |1 12 |3 14 [5 16 [7 18 19 [10/11]12|13]1411516

string theTree[l17] = {"", "A", "B",}

trees as arrays

parentIndex = index / 2
leftChild = index * 2
rightChild = index * 2 + 1

v ¥y v
node [JABICIDIEFGHI [J
7

index [0 [1 [2 3 141516 8 19 110[11]12(13114 15|16
string theTree[l17] = {"", "A", "B",}

why arrays

single array — less storage/memory allocation

represent tree as single vector

12

the heap property

20]
40) (60

heap property: parent < any of its children @ @

13

a non-heap

10)
20) (80

heap property: parent < any of its children @ @

14

heap code

linked off slides page of repo
class binary_heap {

private:
// heap[1] 1is root
// leftChildIndex
// rightChildIndex
// parentIndex
vector<int> heap;
int heap_size;

index * 2
index * 2 + 1
index / 2

15

heap insert

add new node as leaf node

while new node < parent node: swap with parent

16

heap insert

add new node as leaf node

while new node < parent node: swap with parent

insert(25) @
(30] (80)
@

16

heap insert

add new node as leaf node

while new node < parent node: swap with parent

insert(25) @
(30 (80)
CERCECLD
50 (1) ()

16

heap insert

add new node as leaf node

while new node < parent node: swap with parent

insert(25)

16

heap insert

add new node as leaf node

while new node < parent node: swap with parent

insert(25) @

16

insert(int)

void binary_heap::insert(int x) {
++heap_size;
heap.push_back(x) ;
percolateUp(x);

17

percolateUp(int)

void binary_heap::percolateUp(int index) {

int newValue = heap[index];

// while not at root and

// less than parent...

while (index > 1 && newValue < heap[index / 2]) {
// move parent down
heap[index] = heap[index / 2];
// advance up the tree
index /= 2;

+

heap[index] = newValue;

18

insert runtime

worst case: logy, N nodes changed

19

insert average case?

average case is better assuming random keys:

intuition: leafs have bottom half of values (on average)

..so usually don't need to move up

..and if we do, parents of leafs have 25th to 50th percentile of values
..50 need to move up two steps even less

about 2 steps moved up on average

20

heap deleteMin

replace root with last leaf node

while node greater than children: swap with smallest child

21

heap deleteMin

replace root with last leaf node

while node greater than children: swap with smallest child
deleteMin() @

30] (50)
40) (60) (%9) (8Y)

21

heap deleteMin

replace root with last leaf node

while node greater than children: swap with smallest child
deleteMin() @

80)
99) (&)

“®
e

21

heap deleteMin

replace root with last leaf node

while node greater than children: swap with smallest child
deleteMin() @

) (80
40) (60) (%9 (8)

21

heap deleteMin

replace root with last leaf node

while node greater than children: swap with smallest child

deleteMin()

(30
) (80
40) (60) (%9 (8)

¢
() (&)

is a heap

not a heap

21

heap deleteMin

replace root with last leaf node

while node greater than children: swap with smallest child
deleteMin() @

(1) (s0)
) (60) (99) (1)

21

deleteMin code

int binary_heap::deleteMin() {

if (heap_size == 0)

throw ...;
int result = heap[l];
heap[1l] = heap[heap_size—1];
heap.pop_back();
percolateDown(1l);
return result;

22

precolateDown code

int binary_heap::percolateDown(int index) {
int value = heap[index];
// while left child exists
while (index * 2 <= heap_size) {

}

int left = index * 2, right = index * 2 + 1;

// set child to smallest child that exists

int child = left;

if (right <= heap_size && heap[right] < heap[left])
child = right;

// 1f less than smallest, done

if (value < heap[child]) break;

// otherwise:

heap[index] = heap[child]; // move child up
index = child; // and traverse down

heap[index] = value;

23

deleteMin runtime

worst case O(log N) — move nodes from root to leaf

24

other heap operations?

decreaseKey/increaseKey
change value, then percolateUp/Down
slow (O(V)) if you have to find the value
fast (©(log N)) if you already know where value is
(one method: keep track of its index)
faster (amortized ©(1)/©(1)) in Fibanocci/strict Fibanocci heaps

remove
decreaseKey, then deleteMin

25

core heap operations

insert — O(log V') worst case, better on “average”
deleteMin — ©O(log V)
findMin — ©(1)

26

heap sort

void heapSort(vector<T>& values) {
binary_heap<T> heap;
for (T x : values)
heap.insert(x);
values.clear();
while (!heap.empty()) {
values.push_back(heap.deleteMin());
}

©(N log N) sort

can be done in place with more careful implementation

(use values as the max-heap’s array,
place sorted elements starting at end)

mostly not as fast in practice as comparable unstable sorts

27

compression

compression

50KB webpage as 5KB download (a lot faster!)
100MB of machine code as 50MB download?

movie of 24 1IMB pictures/second into 10MB /minute file?

28

lossy compression

for audio, pictures, video, lossy compression is common

intuition: you won't notice if we make the pixel 0.25% darker
..and it had “noise” from camera sensor, etc. anyways

idea: model human perception

write down most important parts of audio/image/etc.
important = noticed by humans

29

lossless compression

lossless compression — reproduce original file

rely on patterns

example: text file has many more ‘e's than '!'s
..S0 choose shorter encoding for ‘e’ than ‘I’

example: computer-drawn images have lots of white space

..50 have a way to represent “a big white rectangle” (instead of
specifying each pixel)

30

typical compression results

ratio = original size:final size

note: usually a compression ratio/speed tradeoff (not shown)

lossless:
for English text or source code: about 4:1
for CD-quality audio: about 2:1
for photographs: about 2:1
for computer-drawn diagrams: about 5:1 to 20:1

lossy: (making a guess at what is “close enough” in quality)
for CD-quality audio: about 4:1
for standard definition TV video+audio: about 1:40

31

a prefix code

letter code

a 0]

b 100
C 101
d 11

a prefix code

letter code

a 0 prefix code

b 100 no code is prefix of another (no ambiguity)

c 101 shorter codes for more frequent values (hopefully)
d 11

a prefix code

letter code

a 0]

b 100
C 101
d 11

baaacda|=p 100 00 0 101 1600 O

prefix code
no code is prefix of another (no ambiguity)
shorter codes for more frequent values (hopefully)

32

prefix codes as trees

letter code

a 0] 0O 1

b 100 @

C 101 0O 1

d 11 Q @
0 1

prefix code cost

letter code frequency

a 0 [5/12
b 100 [1/6
c 101 |1/12
d 11 13

5 1 1 1 11
cos zi:pfr B it 3t 3ty : (bits per symbol)

p;. probability symbol ¢z occurs
r;: length of code for ¢

prefix code cost

letter code frequency

a 0 [5/12
b 100 |1/6
c 101 |1/12
d 11 |13

5) 1 1 1 11
t= iri =1+ — - —.2=— (bit I
cos Ei piti = 15 +6 3+12 3+3 5 (bits per symbol)

p;. probability symbol ¢z occurs
r;: length of code for ¢

versus a=00,b=01,c=10,d=11: cost = 2 (bits per symbol)
how to find minimum cost prefix code (given frequencies)?

34

high-level compression steps

read file, find symbol frequencies

choose best prefix code (called Huffman code) based on frequencies
best = assuming each code maps to one symbol

write prefix code to output

read file, convert to preifx code, write to output

input file + chosen prefix code | input file using prefix code

35

high-level compression steps

read file, find symbol frequencies

choose best prefix code (called Huffman code) based on frequencies
best = assuming each code maps to one symbol

write prefix code to output

read file, convert to preifx code, write to output

input file + chosen prefix code | input file using prefix code

35

finding the best prefix code

build prefix code tree from bottom up

intuition 1: least frequent thing at bottom — use it first
use case for a priority queue

intuition 2: combine less frequent symbols into more frequent group
work with partial prefix trees

36

running example and frequencies

if it is to be, it is up to me

symbol frequency | symbol frequency
1 p

O 3 4+~ T
N = O~ DN
C

building the Huffman tree (1)

OO0 O
list of partial prefix trees

labelled with total frequency of contained symbols
goal: combine these into one prefix tree

38

building the Huffman tree (1)

combine two least frequent into partial prefix tree
new frequency = sum of old frequencies

...............

38

building the Huffman tree (1)

{OCRGHOROROROROROROROR®

combine two least frequent into partial prefix tree
new frequency = sum of old frequencies

building the Huffman tree (2)

0 .

39

building the Huffman tree: alternatives

multiple choices of what to combine
proof not shown: produce same quality prefix tree

40

building the Huffman tree (3)

..............................
....

OO O, YO0
[@Q@][}
©@®)

41

building the Huffman tree (4)

42

building the Huffman tree (5)

43

buuldmg the Huffman tree (6)

44

building the Huffman tree (7)

45

the final Huffman tree

letter code

(-

00

c

01000

01001

01010

01011

011

10000

10001

1001

1010

1011

4 |O|OD|HT|t|T|3|

11

46

tree-building pseudocode

class PrefixTree {

PrefixTree(char c, int frequency);
PrefixTree(PrefixTree rightSide, PrefixTree leftSide);
PrefixTree(const PrefixTree &other);

s
PriorityQueue<PrefixTree> queue;

for (char c, frequency f in inputFile) {
queue.insert(PrefixTree(c, f));

while (queue.size() > 1) {
PrefixTree first = queue.deleteMin();
PrefixTree second = queue.deleteMin();
queue.insert(PrefixTree(first, second));
}

return queue.deleteMin();

47

storing the prefix code

file format for the lab:

space 00
01000
01001
01010
01011
011
10000
10001
1001
1010
1011
11

c

40 O DT T 3

48

real format?

does this save space?

probably if input file is big enough...

but real compression formats use a more compact encoding
not having you do in lab to ease debugging/etc.

49

what about the data?

in lab: the text ©1111110011110..

obviously wastes a lot of space...

real compression: sequence of bytes, 8 bits per
extra work to extract bit-by-bit, match with prefix code

50

last time

an application for trees and heaps: Huffman coding
goal: lossless compression

divide document into symbols (e.g. characters)

choose variable length encodings for symbols

prefix code — no code prefix of another
represented by a tree

Huffman coding — product optimal cost prefix codes:

priority queue (ordered by frequency) of partial prefix code trees
build from bottom up, least frequent first

51

decoding

load the code into a prefix code tree
then, read bits, traversing tree until leaf

psuedocode:

while (there are more bits) {
PrefixTreeNode *current = root;
while (current is not a leaf) {
if (next bit is 0)
current = current—>left;
else
current = current—>right;
}

output(current—>symbol) ;

example

letter code

3 0 0 1

b 100 @

C l@l @ 1

d 11 Q @
0O 1

11 100 O 101 © O 11 = dba caad

example

letter code

a 0]

b 100

c 101 1

d 11 @

0 1
@

0

o

0 1
®

11 100 0 101 0 0 11 = dba caad

example

letter code

a 0

b 100

c 101 1

d 11 @

0 1
@

0

o

0 1
®

11 100 0 101 0 0 11 = dba caad

example

letter code

3 0 0 1

b 100 @

C l@l @ 1

d 11 Q @
0O 1

11 100 O 101 © O 11 = dba caad

example

letter code

a 0]

b 100

c 101 1

d 11 @

0 1
@

0

o

0 1
®

11 100 0 101 0 0 11 = dba caad

example

letter code

a 0

b 100

c 101 1

d 11 @

0 1
@

0]

O

0 1
)

11 100 0 101 0 0 11 = dba caad

example

letter code

a 0] 0O 1
b 100 @
d 11 Q @

11 100 0 101 0 0 11 = dba caad

example

letter code

3 0 0 1

b 100 @

C l@l @ 1

d 11 Q @
0O 1

11 100 O 101 © O 11 = dba caad

example

letter code

a 0

b 100

c 101 1

d 11 @

0 1
®

0

o

0 1
®

11 100 0 101 0 0 11 = dba caad

lab preview

pre-lab: compression
in-lab: decompression

post-lab report

54

pre-lab
write a program to...

calculate letter frequencies of input
use binary heap to build huffman tree
output encoding mapping (format specified in lab)

output encoded message

55

pre-lab tools

heap code supplied in slides

file I/O code provided (fileio.cpp)

or see getWordInTable.cpp from lab 6
or see http://www.cplusplus.com/doc/tutorial/files/
or see ifstream documentation

56

http://www.cplusplus.com/doc/tutorial/files/
http://en.cppreference.com/w/cpp/io/basic_ifstream

a note on ASCII

the American standard character codes

7-bit charcters (extra bit left over in bytes)
ASCII or superset used to represent English text

128 characters (95 printable, 33 non-printable)

Wikipedia article as table/details

57

https://en.wikipedia.org/wiki/ASCII

ASCII codes

for lab: only worry about “printable” ASCII characters
byte values Ox20 to Ox7e

special case: Ox20 = ‘space’

no other whitespace characters used
(output character in table as itself...)

58

heap example

linked off slides page as
binary_heap.h
binary_heap.cpp

you may use for lab

59

heap declaration: public

class binary_heap {
public:

}s

binary_heap();
binary_heap(vector<int> vec);
~binary_heap();

void insert(int x);
int findMin();

int deleteMin();
unsigned int size();
void makeEmpty();
bool 1isEmpty();

void print();

60

heap declaration: private

class binary_heap {

private:
vector<int> heap;
unsigned int heap_size;
void percolateUp(int hole);
void percolateDown(int hole);

I

61

vector heap

vector<int> heap — vector representing binary tree, using rules
shown before

heap[0] is unused

heap[1] is root

heap[i * 2] is left child of node i
heap[i * 2 + 1] is right child of node i

int heap_size is its size
(even though heap.size() - 1 could have been used instead..)

62

binary__heap::binary__heap(vec)

constructor to initialize from unsorted vector

equivalent to repeated insertion...

binary_heap: :binary_heap(vector<int> vec)
heap_size(vec.size()) {
heap = vec;
heap.push_back(heap[0]);
heap[0] = 0;
for (int i = heap_size/2; i > 0; i—)
percolateDown(i);

63

binary__heap::binary__heap(vec)

constructor to initialize from unsorted vector

equivalent to repeated insertion...

recall: in-place heap sort — similar to what's happening here...

binary_heap: :binary_heap(vector<int> vec)
heap_size(vec.size()) {
heap = vec;
heap.push_back(heap[0]);
heap[0] = 0;
for (int i = heap_size/2; i > 0; i—)
percolateDown(i);

63

findMin /size/etc.

int binary_heap::findMin() {
if (heap_size == 0)
throw "findMin()_called_on_empty_heap";
return heap[1];

}

unsigned int binary_heap::size() {
return heap_size;

}

bool binary_heap::isEmpty() {
return heap_size == 0;

}

void binary_heap::makeEmpty() {
heap_size = 0;

/- \N

64

print

void binary_heap::print() {

cout << u(u << heap[@] << ")._.";

for (int i = 1; i <= heap_size; i++) {
cout << heap[i] << "_";
// next line from from http://tinyurl.com/mf9tbgm
bool isPow2 = (((i+1l) & ~(i))==(i+1))? i+1 : 0;
if (isPow2)

cout << endl << "\t";

}

cout << endl;

	priority queues
	motivation
	the ADT

	binary heaps
	recall: complete/perfect binary tree
	heap structure: almost complete tree
	almost complete trees as arrays
	the heap property
	heap code intro
	implementing insert
	implementing deleteMin
	misc. operations
	diversion: heap sort

	compression generally
	motivation

	huffman coding
	example prefix code
	prefix code as tree
	cost/optimality of codes
	optimizing cost: high-level idea
	finding frequencies
	building huffman tree
	storing a prefix code
	decoding
	lab preview

	heap implementation
	class declaration, constructor

