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example graphs

lots of things can be represented as graphs
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formal definition

graph G: G = (V, F)
V. set of vertices (possibly empty)
E: set of edges — pairs of vertices (possibly empty)

directed graph/digraph — ordered pairs
undirected graph — unordered pairs



paths, etc.

vertices v and w adjacent iff (v, w) € E or (w,v) € E
path: vy, vy, ... v, such that (v;,v;.1) € Efor1 <i<mn
length of path: number of edges in path

simple path: path of distinct vertices



weighted graphs

some graphs have weights or costs associated with edges

example motivation:

graph representing roads: weight = travel time

weight or cost of a path = sum of weights of edges in path

10



weighted graph example

Richmond
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cycles, etc.

cycle: path where length > 1, v = v,

undirected graph: ..and no repeated edges
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graph terminology is not universal

some sources will use slightly different definitions:

walk instead of path
path instead of simple path
closed walk instead of cycle

cycle instead of cycle that is also a simple path

14



connectivity

connected graph: for all x,y € V, there exists a path from x to y
N.B: includes 0O-length paths

a connected graph a non-connected graph

B
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in a directed graph...

DAG — directed acyclic graph

no cycles

strongly connected — path from every vertex to every other
implies cycles (or digraph of 0 or 1 nodes)

weakly connected — would be connected as undirected graph

16



strong/weak connected examples

a strongly connected graph
drawn in two ways

another strongly
connected graph

a weakly connected graph
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strong/weak connected examples

a strongly connected graph

drawn in two ways
another strongly

connected graph

a weakly connected graph

two strongly connected component:

17



trees as graphs

trees are connected, acyclic graphs
(with a root chosen)
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complete graph

complete graph: graph with edges between every pair of distinct
vertices
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adjacency matrix

weight if (u,v) € F
0 otherwise

Alu][v] = {

o] e]e] o
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®
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adjacency matrix

weight if (u,v) € F

Alu][v] = {

0 otherwise
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adjacency lists

A~ N
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Y
w

Y

— NULL

— NULL

Y

— NULL

Y
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adjacency lists

A~ N

Y

Y
w

Y

— NULL

— NULL

Y

— NULL

Y
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choosing representations

choice:

adjacency matrix
adjacency list
more?

issues to consider:
size
ease of listing edges from node
ease of determining if node X has an edge

22



variations and alternate representations

adjacency lists might not use linked lists

adjacency matrix can be stored as hashtable (keys=pair of nodes)
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additional information with nodes

often want to store additional information with vertices, edges..

street names, speed limits, ..

IP addresses, link speeds, ..
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topological sort

only defined for directed acyclic graph

order vertices such that if there is a path from v; to v;, then v; is
after v;

Q G topologic

(®) >® A F. C,B D G
0 FAHCGB

B E,
, C, G, B, D,
©)

sorts:
H or
E or
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exercise: topological sort
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exercise: topological sort

G possible answers: A, B, C, D or A, C, B, D

26



no topological sort
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definition: in-degree

indegree of vertex: number of incoming edges
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algorithm (simple)

psuedocode:

vector<Vertex> topologicalSort(Graph g) {
vector<Vertex> result;
for (int i = 0; i < numVertices; ++i) {

}

Vertex v = g.findVertexOfInDegreeZero();

if (did not find v) throw CycleFound();

result.push_back(v);

for (Vertex w : v.adjacentVertices()) {
g.deleteEdge(v, w);

}
g.deleteVertex(v);

return result;

30



example

31



example

- &—@
AX\) initial in-degree 0 vertices — two choices
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example
ONn0
(©)
(®)

®

choose one (A — arbitrary),
add to result, remove edges

result: A,
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example
ONn0
(©)
(E)

®

one in-degree 0 vertex: F

result: A,
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example
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result: A, F,
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example
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result: A, F, H,
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example

result: A, F, H,

31



example

result: A, F, H, C,

31



example

result: A, F, H, C, B, G,
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example

®© @
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®
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®

result: A, F, H, C, B, G, D,
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example

®
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©

O,
®

®

®

result: A, F, H, C, B, G, D, E,
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simple topological sort problems

problem: copying the graph?

problem: finding in-degree 0 vertex?
scan all vertices and all edges???
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better pseudocode

vector<Vertex> topologicalSort(Graph g) {
vector<Vertex> result;

map<Vertex, int> remainingInDegree = g.getInDegrees();

Queue<Vertex> pending;
for (Vertex v : g.vertices())
if (remainingInDegree[v] == 0)
pending.enqueue (V) ;

while (!pending.empty()) {
Vertex v = pending.dequeue();
result.push_back(v);
for (Edge e: g.edgesFrom(v)) {
int newDegree = —remainingInDegree[e.toVertex(
if (newDegree == 0) pending.enqueue(e.toVertex(

—

13

)3
¥

}

return result;



psuedocode idea

track in-degree changes instead of full list of edges
all we care about is in-degree becoming 0

queue: vertices which have in-degree 0 to process

detect cycles? see if result size == number of vertices

34



runtime analysis

assuming |E/| edges, |V| vertices, and adjacency lists
and in-degree map is constant time (e.g. vertices are 0, 1, 2, .., so it's
an array)

step 1: get all in-degrees
O(|E|) (iterate over edges)

step 2: find 4+ enqueue in-degree 0 vertices
O(|V]) (iterate over vertices)

step 3: for each vertex, check outgoing edges
O(|V| + |E]) (each vertex checked exactly once, each edge checked
exactly once)

overall: O(|V| + |E])
35



example
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example
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example

®\3
(&)

0
0 queue: A; D, F,
(®

result: A,
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example

%

:I queue: A; By F, H, E,

result: A, D,

36



example

%

:I queue: A; By F H, E, C,

result: A, D, F,
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example

G%

:I queue: A; By F H, E, C,

result: A, D, F, H,
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example

@\

:I queue: A; By F H, E, C,

result: A, D, F, H, E,
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example

%

:I queue: Ay By F H, E, € B,

result: A, D, F, H, E, C,
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example

0 0 A 0 O
e

queue: A; B F H, E, € B, G,
result: A, D, F, H, E, C, B,
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example

0 0 A 0 O
e

queue: A; B F H, E, € B, G,
result: A, D, F, H, E, C, B, G

36



shortest path

shortest path

lowest {weight,number of edges} path from vertex i to j

37



shortest path applications

map routing
N degrees of separation’

Internet routing

puzzle/game analysis (e.g. rubrik’s cube solutions, ..

38



shortest path algorithm kinds

single pair: path from V to W
single source: for each vertex W, path from V to W

all pairs: for each pair of vertices V, W, path from V' to W

39



shortest path algorithm kinds

single pair: path from V to W
single source: for each vertex W, path from V to W

all pairs: for each pair of vertices V, W, path from V' to W
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more formally

given graph G = (V| F) and a vertex s (the source)..
where an edges (v, w) has weight w,

for each vertex z find a path v1 = s,v9,...,v, = x such that the
Y Wy, v,y 1S MiNimum

40



breadth-first search

shortest path special case: weights = 1

algorithm is breadth-first search

41



special case: breadth-first search on trees

can look at breadth-first search as variation on pre-order traversal
same idea: parents before children
but whole level at a time...

and need to ignore extra paths

42



breadth first search intuition

start with just source
follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, ..
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then use those to find vertices at distance 2, then distance 3, ..
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breadth first search intuition

start with just source
follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, ..

key idea: track visited nodes
so we don't check them again
(already found the shortest path)

43



breadth first search intuition

start with just source
follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, ..

could have list of paths, one per node
but more compact idea:

store one source edge per node

also called shortest path tree

43



breadth first search intuition

start with just source
follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, ..

multiple possible answers!

43



breadth first search pseudocode

void Graph::bfs(Vertex start) {
for (Vertex v: vertices) {
v.distance = INFINITY; v.previous = NULL;
+

Queue frontier;
start.distance = 0;
frontier.enqueue(start);
while (!frontier.isEmpty()) {
Vertex v = qg.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {
if (w.distance == INFINITY) {
w.distance = v.distance + 1;
w.previous = v;
frontier.enqueue(w);

44



BFS runtime?

need to initialize distances to infinity: ©(|V|) operations
need to check every edge: O(|E|) operations
runtime O(|V | + |E])

45



breadth-first search is greedy

greedy algorithms: make the locally optimal choice, never undo

BFS: once one finds a node, one enqueues it once
find the node later — skip it

why this is okay: find nodes in order of distance

second time ‘visiting’ a node — won't be a shorter path!

46



add weights: a broken idea

void Graph::BROKEN_shortestPaths(Vertex start) {

while (!frontier.isEmpty()) {
Vertex v = qg.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

// BROKEN!

if (w.distance == INFINITY) {
w.distance = v.distance + weightOfEdge(v, w);
w.previous = v;
frontier.enqueue(w) ;
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add weights: a broken idea
distance 50 e

previous: A e
void Graph::BROKEN_shortestPaths(Vertex start) e
while (!frontier.isEmpty()) { distance oo
Vertex v = qg.dequeue(); previous: (none)
for (Vertex w : verticesWithEdgeFrom(v)) {
// BROKEN!

if (w.distance == INFINITY) {
w.distance = v.distance + weightOfEdge(v, w);

w.previous = v;
frontier.enqueue(w) ;
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add weights: a broken idea

void Graph::BROKEN_shortestPaths(Vertex start)

while (!frontier.isEmpty()) {
Vertex v = qg.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

// BROKEN!
if (w.distance == INFINITY) {

o

distance 50
previous: A e

50

distance 110
previous: A

w.distance = v.distance + weightOfEdge(v, w);

w.previous = v;
frontier.enqueue(w) ;

110
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add weights: a broken idea

void Graph::BROKEN_shortestPaths(Vertex start)

while (!frontier.isEmpty()) {
Vertex v = qg.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

// BROKEN!
if (w.distance == INFINITY) {

50 °

distance 50 @

previous: A
50
(©

distance 110
previous: A

w.distance = v.distance + weightOfEdge(v, w);

w.previous = v;
frontier.enqueue(w) ;
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fix part 1: update to smaller distance

void Graph: :BROKEN_shortestPaths(Vertex start) {

while (!frontier.isEmpty()) {

Vertex v = q.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {
int newDistance = v.distance + weightOfEdge(v, w);

if (newDistance < w.distance) {
w.distance = newDistance;
w.previous = v;
frontier.enqueue(w) ;
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fix part 1: update to smaller distance

void Graph: :BROKEN_shortestPaths(Vertex start) {

while (!frontier.isEmpty()) {

Vertex v = q.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {
int newDistance = v.distance + weightOfEdge(v, w);

if (newDistance < w.distance) {
w.distance = newDistance;
w.previous = v;
frontier.enqueue(w) ;

problem: now enqueuing nodes multiple times
want to only visit node once
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fix part 2: visit nodes once, order by distance

void Graph::SLOW_shortestPaths(Vertex start) {
for (Vertex v: vertices) {
v.distance INFINITY;
V.previous NULL;
v.visited = false;

}

start.distance = 0;
while (!haveUnvisitedNode()) {
Vertex v = findUnvisitedNodeWithSmallestDistance();
v.visited = true;
for (Vertex w : verticesWithEdgeFrom(v)) {
int newDistance = v.distance + weightOfEdge(v, w);
if (newDistance < w.distance) {
w.distance = newDistance;
w.previous = v;
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visiting by distance?

assumption: no negative weights
given this: distance only decreases

and can't find shorter path from further node!

50



fix part 3: a faster search

void Graph::shortestPaths(Vertex start) {
PriorityQueue pq;
for (Vertex v: vertices) {
v.distance = INFINITY; v.previous = NULL;
+

start.distance = 0; pqg.insert(0, start);
while (!pg.empty()) {
Vertex v = pq.deleteMin();
for (Vertex w : verticesWithEdgeFrom(v)) {
int oldDistance = w.distance;
int newDistance = v.distance + weightOfEdge(v, w);
if (newDistance < oldDistance) {
w.distance = newDistance; w.previous = v;
if (oldDistance == INFINITY)
pg.insert(newDistance, w);
else
pq.decreaseKey(newDistance, w);
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a hote on names

called Dijkstra’s algorithm

52



Dijkstra’s algorithm

example 1

prev path

8188|3188 |7|F

O MmoooO ™ >
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Dijkstra’s algorithm example 1

O mMmmQgaO ®>

dist prev path
— A
A |A=C
A |A—D

13187 ™8|°
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Dijkstra’s algorithm example 1

OMmMmoOm >

dist prev path

A

A—D—B

A—C

A—D

A—D—E

A—D—F

DN =N OO

OO O] >» > 0O

A—D—G
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Dijkstra’s algorithm example 1

D is adjacent —
but not a shorter path

e
A0 [ |A

B 6 P |A-D—B
c 2 /A |A=C

D 1 |A |A=D

E 2 |D |JA—-D—E
F 4 |C JA-C=F
G |6 XD |A—=D—G

A

F updated from distance 7 (via D)
to distance 4 (via C)




Dijkstra’s algorithm example 1

O MmO Om =

dist prev path

A

A—D—E—B

A—C

A—D

A—D—E

A—C—F
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OO O| > > m

A—D—G
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Dijkstra’s algorithm example 1
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dist prev path
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Dijkstra’s algorithm example 1
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dist prev path
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Dijkstra’s algorithm example 1

O MmO ON w >

dist prev path

A

A—D—E—B

A—C

A—D

A—D—E
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O 00 > > m

A—D—G
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Dijkstra’s algorithm example 2

Mmoo ® >
EEBEINE
|
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Dijkstra’s algorithm example 2

OO MmMoONhm®>

dist prev path
o — A

7 A |A—B
9 A |A=C
o |— |—

o — |—

14 A |A—G
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Dijkstra’s algorithm example 2

dist prev path

A0 — |A

B |7 |A |A—B

C 9 A |A=C

D 22 B |A—»B—D
E o0 — |—

G 14 A |A—G




Dijkstra’s algorithm example 2

dist prev path

A0 — |A

B 7 |A |A—B

cC 9 A |A=C

D 20 |[C |A—C—D
E o0 — |—

G |11 |C A—C—G




Dijkstra’s algorithm example 2

aomoO 0 W >

dist prev path

A

A—B

A—C

A—C—D

A—C—G—E

ISP HIP

A—C—G
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Dijkstra’s algorithm example 2
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dist prev path

A

A—B

A—C

A—C—D

A—-C—G—E

OO0 > >

A—C—G
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Dijkstra’s algorithm example 2

aom o 0w >

dist prev path

A

A—B

A—C

A—C—D

A—-C—G—E

OO0 > >

A—C—G
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Dijkstra’s algorithm runtime

for every vertex (worst case):

find unprocessed vertex with smallest distance

O(|V[?) total — if checking every vertex
O(|V|log|V]) total — if removing from heap

scan all edges of vertex, update distances

O(|E|) total — if not maintaining priority queue
O(|F|log |V']) if updating binary heap

total with binary heap: O((|E| + |V|)log [V])
Fibanocci heap instead: O(|E| + |V|log |V])
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negative weights

example: weight = fuel used; negative weight = refueling

Dijkstra’s algorithm doesn’t work
assumption: won't update a node's distance after visiting its edges

alternative algorithms do — e.g. Bellman-Ford (O(|E||V|) runtime)

negative cost cycles — infinitely small cost!
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high-level view: dealing with negative weights
Bellman-Ford algorithm

for every node: track shortest known path from source
initially: “no known paths”

iterate through all edges updating paths
Q: “can this edge be used to make a better path to source?”

repeat |V| times
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single-source to single-source+destination

what if want to get from A to Z

solution: Dijkstra's algorithm from A but stop early — when we
proesss Z

gaurentee: won't update Z's distance again
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heuristic shortest path

road map — still slow!

some ideas for speeding up:

search highways instead of side-roads earlier
search edges in correct direction earlier
search from both directions, try to meet

if you take Al — major topic is heuristic search
taking advantage of ideas like the above
..and still getting shortest path, if you want it
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travelling salesperson problem

given cities, costs to travel between, least-cost trip that:
visits each city exactly once, and
returns to the starting city

as a graph:
cities = vertices
costs = edge weights

assume fully connected graph

alternative: first add infinite weight edges between disconnected nodes
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TSP difficulty

solving TSP exactly is NP-hard

worst case: essentially need to enumerate all possible tours

but, practically solved up to 10000s of cities on ‘real’ maps
obviously doing something smarter...
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diversion: NP-hard

see also Algorithms

idea: efficient solutions to this problem vyield efficient solutions to
many other problems

— “as hard as” those other problems

other problems =~ problems whose solutions can be verified in
polynomial time
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some definitions

Hamiltonian path — path that visits every vertex on a graph
exactly once

Hamiltonian cycle — Hamiltonian path that where start node =
end node

traveling salesperson problem: find least weight Hamiltonian cycle
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Hamiltonian cycles and hardness

no known efficient algorithm to detect whether a graph has a
Hamiltonian cycle

(but easy for complete graphs...)
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naive TSP algorithm

choose a starting city z;

for each unused next city xo: (n-1 possible)

for each unused next city x3: (n-2 possible)
for each unused next city x4: (n-3 possible)

see if w1, 9, 3,24, ...,x, is shorter than anything else

output shortest seen

(N — 1)! factorial runtime = O(N!)
worse than ©(2")
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naive TSP implementation

vector<Vertex> partial_tour; vector<Vertex> best_tour;
void TestTours() {
if (partial_tour.size() == vertices.size()) {
partial_tour.push_back(partial_tour[0]);
if (weightOf(partial_tour) < weightOf(best_tour)) {
best_tour = partial_tour;
ks

partial_tour.pop_back();
} else {
for (Vertex v : vertices — partial_tour) {
partial_tour.push_back(v);
TestTours();
partial_tour.pop_back(v);

}
+
}
TSP() {
best_tour = ...; partial_tour = {startNode};

TestTours();
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naive TSP implementation

vector<Vertex> partial_tour; vector<Vertex> best_tour;
void TestTours() {
if (partial_tour.size() == vertices.size()) {
partial_tour.push_back(partial_tour[0]);
if (weightOf(partial_tour) < weightOf(best_tour)) {
best_tour = partial_tour;
ks

partial_tour.pop_back();
} else {
for (Vertex v : vertices — partial_tour) {
partial_tour.push_back(v);
TestTours();
partial_tour.pop_back(v);

}
+
}
TSP() {
best_tour = ...; partial_tour = {startNode};

TestTours();
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(n-1)! is big

20 cities — > 10'° tours to check

30 cities — > 10%° tours to check
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best gaurenteed TSP algorithm

TSP is NP-hard — no known subexponetial solution

best general algorithm: ©(N?2")
20 cities — > 10® operations
30 cities — > 10! operations

uses dynamic programming — covered in 4102
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best gaurenteed TSP algorithm

TSP is NP-hard — no known subexponetial solution

best general algorithm: ©(N?2")
20 cities — > 10® operations
30 cities — > 10! operations

uses dynamic programming — covered in 4102

solve subproblems: best way to visit cities 1,2, 3,4 starting at 1
ending at 4

know: if 1,3,2,4 is best for above subproblem, then 1,3,2,4,5,1 is
shorter than 1,2,3,4,5,1

can avoid checking 1,2,3,4,5,1... o



TSP heuristics

one idea: branch and bound

still: construct lots and lots of possible tours
keep adding cities

but maintain track extra numbers:

the best cost found so far
lower bound on the tours we could find with chosen nodes

stop enumerating (return from FindTour early) if lower bound is
too low
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a lower bound

example lower bound:

if I've chosen cities 1, 2, 4, 3 in that order

minimum cost = w(1,2) + w(2,4) + w(4,3) + Y_ min edge from i
i=3

if min possible cost > best known cost: stop!



other TSP ideas

TSP on real maps — take advantage of geometry
try cities close to each other first

use map distances to compute minimum costs quickly

sometimes can use approximation algorithms
assumption: sufficiently ‘normal’ weights — e.g. A-B shorter than A-C-B
gaurenteed within a certain factor of best solution
good for pruning very bad solutions quickly
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TSP records

2006: 85,900 ‘cities’

distances, etc. from real circuit production problem from the 1980s
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lab 11

pre-lab: topological sort
in-lab: naive travelling salesperson (map = Tolkein's middle earth)

post-lab: some acceleration techniques
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spanning tree definition

given a connected undirected graph G, a spanning tree G' = (V, E') is
a subgraph such that:

its edges are a subset of the original graph's (what subgraph means)

it has the same vertices
it is connected

it has no cycles — i.e. it is a tree
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spanning tree construction

take a connected graph

repeatedly: remove an edge that does not disconnect the graph

can't remove any more:
now have a spanning tree — same vertices, but is a tree
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spanning tree examples

original graph

spanning trees
Q O éb %@ -
76



almost a spanning tree?

B A
oy

https://commons.wikimedia.org/wiki/File:London_Underground_Zone_2.svg 17


https://commons.wikimedia.org/wiki/File:London_Underground_Zone_2.svg

minimum spanning tree

A minimum spanning tree T = (V, E') of a weighted graph G is

a spanning tree such that >  weight(e) is smallest.
eck’

NB: can be multiple minimum spanning trees
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minimum spanning tree algorithms

two main algorithms
both greedy — choose edges, then never take that back
tricky part: figuring out what order to choose them in

-.and (not this class) proving that's optimal
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TSP example (1)

(13509 us cities)

via U Waterloo: http://www.math.uwaterloo.ca/tsp/ 80


http://www.math.uwaterloo.ca/tsp/

TSP example (2)

N R

(49603 sites on Nat'l Register of Historic Places)

L il

via U Waterloo: http://www.math.uwaterloo.ca/tsp/ 8 1


http://www.math.uwaterloo.ca/tsp/

MST example
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Prim’s greedy MST algorithm

track: vertices in spanning tree, edges in spanning tree

add a vertex to the spanning tree (arbitrarily)

while not all vertices are in the spanning tree:

pick an edge (u,v) such that

u is already in the spanning tree
v is not already in the spanning tree
(u,v) has the smallest weight of all possible edges

add the edge and v to the spanning tree
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Prim’s algorithm example
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Prim’s algorithm example
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Prim’s algorithm example
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Prim’s algorithm example
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Prim’s algorithm example
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Prim’s algorithm example

(A. D). (A, B). (C, D), (D, G)
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Prim’s algorithm example

(A, D), (A, B), (C, D), (D, G), (F, G)

84



Prim’s algorithm example

(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)
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Prim’s algorithm runtime

spanning tree will have |V| — 1 edges
each edge added connects a new vertex

choosing each edge

naive — scan all edges each time |E| work
better — maintain priority queue of vertices, priority=cost of best edge

up to |E| inserts or decreaseKeys (update best edge for vertex)
max size of priority queue: |V|—1

O(|E|log |V]) time with binary heap
O(|E| + |[V]log|V]) time with Fibanocci heap
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Prim’s algorithm pseudocode

set<Edge> used_edges; // where result goes

priority_queue<Vertex> pending_vertices;

map<Vertex, Edge> best_edge_to;

for (Vertex v : vertices) {
pending_vertices.insert (INFINITY, v);

}

pending_vertices.decreaseKey (0, start_vertex);
while (!pending_vertices.empty()) {
Vertex v = pending_vertices.deleteMin();
used_edges.insert(best_edge_to[v]);
for (Edge e : edgesFrom(v)) {
if (e.cost < best_edge_to[e.to].cost) {
best_edge_to[e.to] = e}
if (e.to in pending_vertices)
pending_vertices.decreaseKey(e.cost, e.to);
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Kruskal’s greedy MST algorithm

track: edges in spanning tree

while spanning tree has less than |V| — 1 edges:

pick a minimum weight edge (u,v) such that
adding it to the spanning tree would not create a cycle

add the edge to the spanning tree

88



Kruskal’s algorithm example
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Kruskal’s algorithm example
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Kruskal’s algorithm example
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Kruskal’s algorithm example
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Kruskal’s algorithm example
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Kruskal’s algorithm example

(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)
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Kruskal’s algorithm example
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Kruskal: tracking sets (1)

set ABCD
5
3 track sets of edges
set FG |1 same set — already connected
4 goal: add edges that connect distin
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Kruskal: tracking sets (2)

set ABCD

set ABCDFG
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Kruskal pseudocode

SetTracker setTracker;

for (Vertex v : vertices) {
setTracker.createNewSetFor(v);

}

vector<Edge> result;
for (Edge e : sortByWeight(edges)) {
// check if adding edge would connect unconnected sets
if (setTracker.setIdOf(e.from) != setTracker.setIdOf(e.to)) {
result.push_back(e);
setTracker.mergeSets(
setTracker.setIdOf(e.from),
setTracker.setIdOf(e.to)
)3

if (result.size() == vertices.size() — 1) break;
}

return result;
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Kruskal runtime

need to sort all edges (|F|log|F| time)

for each edge: (|F| times)

two “find the set something is in" operations

for each edge added: (|V| — 1 times)

one “merge two sets” operations
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union-find data structure

SetTracker called a “union-find datastructure” or “disjoint-set
datastructure”

best implementation: slightly worse than amortized constant time
per operation

amortized O(«a(n)) time where «(n) is the inverse of the Ackermann
function

a(n) is asymptotically smaller than log(n)
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Kruskal runtime

need to sort all edges (|F|log|F| time)
for each edge: (|F| times) O(|E|a(|V]))

two “find the set something is in" operations

for each edge added: (|V| — 1 times) O(|V|«a(|V]))

one “merge two sets” operations

overall: O(|E|log |E|) = ©(|E|log|V|) time
aside: log|V| € ©(log |E|) since |[V|* > |E| > |V] — 1
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implementing union-find: naive/slow

map<Vertex, Vertex> parentOf;
MakeInitialSets() {
for (Vertex v : vertices)
parentOf[v] = v;
b
// Each set represented by its '"root" vertex
Vertex FindSetOf(Vertex v) {
if (v == parentOf[v]) {
return v;
} else {
return FindSetOf (parentOf([v]);
}
ks

UnionSets(Vertex u, Vertex v) {
parentOf[v] = u;
}
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union-find graphs

set ABCD set ABCDFG

Union(
IdOf( )
IdOf(G

set E set E
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implementing union-find: path compression

FindSetOf (Vertex v) {
if (v == parentOf[v]) {
return v;
} else {
parentOf[v] = FindSetOf(parentOf[v]);
return parentOf[v];
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implementing union-find: path compression

FindSetOf (Vertex v) {
if (v == parentOf[v]) {
return v;
} else {
parentOf[v] = FindSetOf(parentOf[v]);
return parentOf[v];

}

shortcut future searches for loop
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implementing union-find: union by size

map<Vertex, 1int> sizeOf; // SetId -> # of vertices in set
MakeInitialSets() {
for(...)
sizeOf[v] = 1;
}

UnionOf (Vertex u, Vertex v) {
if (sizeOf[u] > sizeOf[v]) {
(u,v) = (v,u);
¥
// attach lower size to higher size
parentOf[u] = v;

// update size
sizeOf[v] += sizeOf[u];

} 100



graph summary (1)

directed (digraph) versus undirected

topological sort — ordering of vertices in digraph
intuition: find vertex w/ no in-edge, delete

shortest path — minimum edges from one vertex to another

unweighted: breadth-first search — queue — distance 1 then 2 then 3

weighted: Dijkstra’'s — priority queue — visit veritices ordered by best
distance
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graphs summary (2)

traveling salesperson problem — minimum ‘tour’ — visit all, then
return

NP-hard — essentially “try everything” worst case

speedup: stop search early if not better than known best

speedup: avoid rechecking subproblems (e.g. shortest path from A to D
visiting A,B,C,D)

speedup: heuristics

spanning tree — tree (no cycles) connecting all vertices of
connected graph

minimum spanning tree — spanning tree with min sum of edge
weights

finding: greedy — choose smallest edges first
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aside: MST to approximate TSP

TSP special case: triangle rule applies

w(a — b) <w(a— c¢) +w(c—b)

one “good” solution: find MST ()
()

do an (e.g.) pre-order traversal of the tree

use that as the tour
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aside: MST to approximate TSP

TSP special case: triangle rule applies

w(a — b) <w(a— c¢) +w(c—b)

one “good” solution: find MST

(]
do an (e.g.) pre-order traversal of the tree

use that as the tour
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MST as good TSP approx

context: triangle rule, use MST pre-order traversal as TSP

worst weight: 2 x M ST

edges not in MST: weight not worse than path through tree
result: use every edge twice (to get to node, to get back)
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MST as good TSP approx

context: triangle rule, use MST pre-order traversal as TSP

worst weight: 2 x M ST

edges not in MST: weight not worse than path through tree
result: use every edge twice (to get to node, to get back)

observation: best TSP - one edge = a spanning tree

— weight of MST > best TSP solution (= some ST + one edge)
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MST as good TSP approx

context: triangle rule, use MST pre-order traversal as TSP

worst weight: 2 x M ST

edges not in MST: weight not worse than path through tree
result: use every edge twice (to get to node, to get back)

observation: best TSP - one edge = a spanning tree
— weight of MST > best TSP solution (= some ST + one edge)

— above TSP — at most 2x as bad as best
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MST to TSP example
(F)
(©
0 ()
O>—@ =
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MST to TSP example

pre-order traversal
from root F:

F
By
G,
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