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example graphs

lots of things can be represented as graphs
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maps

nodes: intersections?
edges: roads?

image: open street map 4



airline routes

image: openflights 5



flowcharts
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formal definition

graph G: G = (V, E)

V : set of vertices (possibly empty)

E: set of edges — pairs of vertices (possibly empty)
directed graph/digraph — ordered pairs
undirected graph — unordered pairs

8



paths, etc.

vertices v and w adjacent iff (v, w) ∈ E or (w, v) ∈ E

path: v1, v2, . . . vn such that (vi, vi+1) ∈ E for 1 ≤ i ≤ n

length of path: number of edges in path

simple path: path of distinct vertices

9



weighted graphs

some graphs have weights or costs associated with edges

example motivation:
graph representing roads: weight = travel time

weight or cost of a path = sum of weights of edges in path

10



weighted graph example

Charlottesville

Culpeper

DC

Richmond

Fredericksburg
46
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58

53

35
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cycles, etc.

cycle: path where length ≥ 1, v1 = vn

undirected graph: …and no repeated edges
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loops

(v, v) ∈ E

A
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graph terminology is not universal

some sources will use slightly different definitions:

walk instead of path

path instead of simple path

closed walk instead of cycle

cycle instead of cycle that is also a simple path

14



connectivity

connected graph: for all x, y ∈ V , there exists a path from x to y
N.B: includes 0-length paths

A

B

CD

a connected graph
A

B

C

D E

F

a non-connected graph
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in a directed graph…

DAG — directed acyclic graph
no cycles

strongly connected — path from every vertex to every other
implies cycles (or digraph of 0 or 1 nodes)

weakly connected — would be connected as undirected graph
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strong/weak connected examples

a strongly connected graph
drawn in two ways
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trees as graphs

trees are connected, acyclic graphs
(with a root chosen)
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complete graph

complete graph: graph with edges between every pair of distinct
vertices
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adjacency matrix

A[u][v] =
weight if (u, v) ∈ E

0 otherwise

1 2 3 4
1 0 1 1 1
2 0 0 1 0
3 0 0 0 0
4 1 0 0 0
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4

1 2 3 4
1 9 17 0 0
2 0 0 13 0
3 0 0 0 10
4 0 16 18 0
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4
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adjacency lists
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adjacency lists
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choosing representations

choice:
adjacency matrix
adjacency list
more?

issues to consider:
size
ease of listing edges from node
ease of determining if node X has an edge
…

22



variations and alternate representations

adjacency lists might not use linked lists

adjacency matrix can be stored as hashtable (keys=pair of nodes)

…
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additional information with nodes

often want to store additional information with vertices, edges…

street names, speed limits, …

IP addresses, link speeds, …

…

24



topological sort

only defined for directed acyclic graph
order vertices such that if there is a path from vi to vj, then vj is
after vi
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B

A

topological sorts:
A, F, C, B, D, G, E, H or
F, A, H, C, G, B, D, E or
…
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exercise: topological sort

A

B D

C

possible answers: A, B, C, D or A, C, B, D
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exercise: topological sort
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C possible answers: A, B, C, D or A, C, B, D
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no topological sort
A

B D

C
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definition: in-degree

indegree of vertex: number of incoming edges
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A
0
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algorithm (simple)

psuedocode:
vector<Vertex> topologicalSort(Graph g) {

vector<Vertex> result;
for (int i = 0; i < numVertices; ++i) {

Vertex v = g.findVertexOfInDegreeZero();
if (did not find v) throw CycleFound();
result.push_back(v);
for (Vertex w : v.adjacentVertices()) {

g.deleteEdge(v, w);
}
g.deleteVertex(v);

}
return result;

}

30



example
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E

C

D
B

A

initial in-degree 0 vertices — two choiceschoose one (A — arbitrary),
add to result, remove edgesone in-degree 0 vertex: F

result: A,
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example

F

H
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C

D
B

A

initial in-degree 0 vertices — two choiceschoose one (A — arbitrary),
add to result, remove edgesone in-degree 0 vertex: F

result: A, F, H, C, B, G, D, E,
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simple topological sort problems

problem: copying the graph?

problem: finding in-degree 0 vertex?
scan all vertices and all edges???

32



better pseudocode

vector<Vertex> topologicalSort(Graph g) {
vector<Vertex> result;
map<Vertex, int> remainingInDegree = g.getInDegrees();

Queue<Vertex> pending;
for (Vertex v : g.vertices())

if (remainingInDegree[v] == 0)
pending.enqueue(v);

while (!pending.empty()) {
Vertex v = pending.dequeue();
result.push_back(v);
for (Edge e: g.edgesFrom(v)) {

int newDegree = −−remainingInDegree[e.toVertex()];
if (newDegree == 0) pending.enqueue(e.toVertex());

}
}
return result;

} 33



psuedocode idea

track in-degree changes instead of full list of edges
all we care about is in-degree becoming 0

queue: vertices which have in-degree 0 to process

detect cycles? see if result size == number of vertices

34



runtime analysis

assuming |E| edges, |V | vertices, and adjacency lists
and in-degree map is constant time (e.g. vertices are 0, 1, 2, …, so it’s
an array)

step 1: get all in-degrees
Θ(|E|) (iterate over edges)

step 2: find + enqueue in-degree 0 vertices
Θ(|V |) (iterate over vertices)

step 3: for each vertex, check outgoing edges
Θ(|V | + |E|) (each vertex checked exactly once, each edge checked
exactly once)

overall: Θ(|V | + |E|)
35



example
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shortest path

shortest path

lowest {weight,number of edges} path from vertex i to j

37



shortest path applications

map routing

N degrees of separation’

Internet routing

puzzle/game analysis (e.g. rubrik’s cube solutions, …)

38



shortest path algorithm kinds

single pair: path from V to W

single source: for each vertex W , path from V to W

all pairs: for each pair of vertices V, W , path from V to W
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shortest path algorithm kinds

single pair: path from V to W

single source: for each vertex W , path from V to W

all pairs: for each pair of vertices V, W , path from V to W
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more formally

given graph G = (V, E) and a vertex s (the source)…

where an edges (v, w) has weight wv,w

for each vertex x find a path v1 = s, v2, . . . , vn = x such that the∑
wvi,vi+1 is minimum

40



breadth-first search

shortest path special case: weights = 1

algorithm is breadth-first search

41



special case: breadth-first search on trees

can look at breadth-first search as variation on pre-order traversal

same idea: parents before children

but whole level at a time…

and need to ignore extra paths

42



breadth first search intuition

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, …
A

B C D E

G H I J

K LM

key idea: track visited nodes
so we don’t check them again
(already found the shortest path)

could have list of paths, one per node
but more compact idea:
store one source edge per node
also called shortest path tree

multiple possible answers!
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breadth first search pseudocode

void Graph::bfs(Vertex start) {
for (Vertex v: vertices) {

v.distance = INFINITY; v.previous = NULL;
}
Queue frontier;
start.distance = 0;
frontier.enqueue(start);
while (!frontier.isEmpty()) {

Vertex v = q.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

if (w.distance == INFINITY) {
w.distance = v.distance + 1;
w.previous = v;
frontier.enqueue(w);

}
}

}
}

44



BFS runtime?

need to initialize distances to infinity: Θ(|V |) operations

need to check every edge: Θ(|E|) operations

runtime Θ(|V | + |E|)
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breadth-first search is greedy

greedy algorithms: make the locally optimal choice, never undo

BFS: once one finds a node, one enqueues it once
find the node later — skip it

why this is okay: find nodes in order of distance

second time ‘visiting’ a node — won’t be a shorter path!

46



add weights: a broken idea

void Graph::BROKEN_shortestPaths(Vertex start) {
...
while (!frontier.isEmpty()) {
Vertex v = q.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

// BROKEN!
if (w.distance == INFINITY) {

w.distance = v.distance + weightOfEdge(v, w);
w.previous = v;
frontier.enqueue(w);

}
}

}
}

}

50

50
110

A

B

C

distance 50
previous: A

distance
previous:
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fix part 1: update to smaller distance

void Graph::BROKEN_shortestPaths(Vertex start) {
...
while (!frontier.isEmpty()) {
Vertex v = q.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

int newDistance = v.distance + weightOfEdge(v, w);
if (newDistance < w.distance) {

w.distance = newDistance;
w.previous = v;
frontier.enqueue(w);

}
}

}
}

}

problem: now enqueuing nodes multiple times
want to only visit node once

48
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fix part 2: visit nodes once, order by distance

void Graph::SLOW_shortestPaths(Vertex start) {
for (Vertex v: vertices) {

v.distance = INFINITY;
v.previous = NULL;
v.visited = false;

}
start.distance = 0;
while (!haveUnvisitedNode()) {

Vertex v = findUnvisitedNodeWithSmallestDistance();
v.visited = true;
for (Vertex w : verticesWithEdgeFrom(v)) {

int newDistance = v.distance + weightOfEdge(v, w);
if (newDistance < w.distance) {

w.distance = newDistance;
w.previous = v;

}
}

}
} 49



visiting by distance?

assumption: no negative weights

given this: distance only decreases

and can’t find shorter path from further node!
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fix part 3: a faster search
void Graph::shortestPaths(Vertex start) {

PriorityQueue pq;
for (Vertex v: vertices) {

v.distance = INFINITY; v.previous = NULL;
}
start.distance = 0; pq.insert(0, start);
while (!pq.empty()) {

Vertex v = pq.deleteMin();
for (Vertex w : verticesWithEdgeFrom(v)) {

int oldDistance = w.distance;
int newDistance = v.distance + weightOfEdge(v, w);
if (newDistance < oldDistance) {

w.distance = newDistance; w.previous = v;
if (oldDistance == INFINITY)

pq.insert(newDistance, w);
else

pq.decreaseKey(newDistance, w);
}

}
}

}
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a note on names

called Dijkstra’s algorithm
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Dijkstra’s algorithm example 1
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Dijkstra’s algorithm example 2
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Dijkstra’s algorithm runtime

for every vertex (worst case):

find unprocessed vertex with smallest distance
Θ(|V |2) total — if checking every vertex
Θ(|V | log |V |) total — if removing from heap

scan all edges of vertex, update distances
Θ(|E|) total — if not maintaining priority queue
Θ(|E| log |V |) if updating binary heap

total with binary heap: Θ((|E| + |V |) log |V |)
Fibanocci heap instead: Θ(|E| + |V | log |V |)

55



negative weights

example: weight = fuel used; negative weight = refueling

Dijkstra’s algorithm doesn’t work
assumption: won’t update a node’s distance after visiting its edges

alternative algorithms do — e.g. Bellman-Ford (Θ(|E||V |) runtime)

negative cost cycles — infinitely small cost!
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high-level view: dealing with negative weights

Bellman-Ford algorithm

for every node: track shortest known path from source
initially: “no known paths”

iterate through all edges updating paths
Q: “can this edge be used to make a better path to source?”

repeat |V | times
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single-source to single-source+destination

what if want to get from A to Z

solution: Dijkstra’s algorithm from A but stop early — when we
proesss Z

gaurentee: won’t update Z’s distance again
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heuristic shortest path

road map — still slow!

some ideas for speeding up:
search highways instead of side-roads earlier
search edges in correct direction earlier
search from both directions, try to meet
…

if you take AI — major topic is heuristic search
taking advantage of ideas like the above
…and still getting shortest path, if you want it
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travelling salesperson problem

given cities, costs to travel between, least-cost trip that:
visits each city exactly once, and
returns to the starting city

as a graph:
cities = vertices
costs = edge weights

assume fully connected graph
alternative: first add infinite weight edges between disconnected nodes
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TSP difficulty

solving TSP exactly is NP-hard

worst case: essentially need to enumerate all possible tours
but, practically solved up to 10000s of cities on ‘real’ maps

obviously doing something smarter…
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diversion: NP-hard

see also Algorithms

idea: efficient solutions to this problem yield efficient solutions to
many other problems

→ “as hard as” those other problems

other problems ≈ problems whose solutions can be verified in
polynomial time
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some definitions

Hamiltonian path — path that visits every vertex on a graph
exactly once

Hamiltonian cycle — Hamiltonian path that where start node =
end node

traveling salesperson problem: find least weight Hamiltonian cycle
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Hamiltonian cycles and hardness

no known efficient algorithm to detect whether a graph has a
Hamiltonian cycle

(but easy for complete graphs…)
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naive TSP algorithm

choose a starting city x1

for each unused next city x2: (n-1 possible)
for each unused next city x3: (n-2 possible)

for each unused next city x4: (n-3 possible)
…

see if x1, x2, x3, x4, . . . , xn is shorter than anything else

output shortest seen

(N − 1)! factorial runtime = Θ(N !)
worse than Θ(2N)
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naive TSP implementation

vector<Vertex> partial_tour; vector<Vertex> best_tour;
void TestTours() {

if (partial_tour.size() == vertices.size()) {
partial_tour.push_back(partial_tour[0]);
if (weightOf(partial_tour) < weightOf(best_tour)) {

best_tour = partial_tour;
}
partial_tour.pop_back();

} else {
for (Vertex v : vertices − partial_tour) {

partial_tour.push_back(v);
TestTours();
partial_tour.pop_back(v);

}
}

}
TSP() {

best_tour = ...; partial_tour = {startNode};
TestTours();
return best_tour;

}
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(n-1)! is big

20 cities — > 1016 tours to check

30 cities — > 1030 tours to check

…
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best gaurenteed TSP algorithm

TSP is NP-hard — no known subexponetial solution
best general algorithm: Θ(N22N )

20 cities — > 108 operations
30 cities — > 1011 operations

uses dynamic programming — covered in 4102

solve subproblems: best way to visit cities 1, 2, 3, 4 starting at 1
ending at 4
know: if 1, 3, 2, 4 is best for above subproblem, then 1, 3, 2, 4, 5, 1 is
shorter than 1, 2, 3, 4, 5, 1
can avoid checking 1, 2, 3, 4, 5, 1…

68



best gaurenteed TSP algorithm

TSP is NP-hard — no known subexponetial solution
best general algorithm: Θ(N22N )

20 cities — > 108 operations
30 cities — > 1011 operations

uses dynamic programming — covered in 4102

solve subproblems: best way to visit cities 1, 2, 3, 4 starting at 1
ending at 4
know: if 1, 3, 2, 4 is best for above subproblem, then 1, 3, 2, 4, 5, 1 is
shorter than 1, 2, 3, 4, 5, 1
can avoid checking 1, 2, 3, 4, 5, 1…

68



TSP heuristics

one idea: branch and bound

still: construct lots and lots of possible tours
keep adding cities

but maintain track extra numbers:
the best cost found so far
lower bound on the tours we could find with chosen nodes

stop enumerating (return from FindTour early) if lower bound is
too low
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a lower bound

example lower bound:

if I’ve chosen cities 1, 2, 4, 3 in that order

minimum cost = w(1, 2) + w(2, 4) + w(4, 3) +
n∑

i=3
min edge from i

if min possible cost > best known cost: stop!
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other TSP ideas

TSP on real maps — take advantage of geometry

try cities close to each other first

use map distances to compute minimum costs quickly

sometimes can use approximation algorithms
assumption: sufficiently ‘normal’ weights — e.g. A-B shorter than A-C-B
gaurenteed within a certain factor of best solution
good for pruning very bad solutions quickly
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TSP records

2006: 85, 900 ‘cities’

distances, etc. from real circuit production problem from the 1980s
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lab 11

pre-lab: topological sort

in-lab: naive travelling salesperson (map = Tolkein’s middle earth)

post-lab: some acceleration techniques
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spanning tree definition

given a connected undirected graph G, a spanning tree G′ = (V, E ′) is
a subgraph such that:

its edges are a subset of the original graph’s (what subgraph means)

it has the same vertices

it is connected

it has no cycles — i.e. it is a tree
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spanning tree construction

take a connected graph

repeatedly: remove an edge that does not disconnect the graph

can’t remove any more:
now have a spanning tree — same vertices, but is a tree
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spanning tree examples

A

B

C

D

E

original graph

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

spanning trees
of graph

76



almost a spanning tree?
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minimum spanning tree

A minimum spanning tree T = (V, E ′) of a weighted graph G is
a spanning tree such that

∑
e∈E′

weight(e) is smallest.

NB: can be multiple minimum spanning trees
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minimum spanning tree algorithms

two main algorithms

both greedy — choose edges, then never take that back

tricky part: figuring out what order to choose them in

…and (not this class) proving that’s optimal
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TSP example (1)

(13 509 us cities)

via U Waterloo: http://www.math.uwaterloo.ca/tsp/ 80

http://www.math.uwaterloo.ca/tsp/


TSP example (2)

(49 603 sites on Nat’l Register of Historic Places)

via U Waterloo: http://www.math.uwaterloo.ca/tsp/ 81

http://www.math.uwaterloo.ca/tsp/


MST example
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Prim’s greedy MST algorithm

track: vertices in spanning tree, edges in spanning tree

add a vertex to the spanning tree (arbitrarily)

while not all vertices are in the spanning tree:

pick an edge (u, v) such that
u is already in the spanning tree
v is not already in the spanning tree
(u, v) has the smallest weight of all possible edges

add the edge and v to the spanning tree
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Prim’s algorithm example
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Prim’s algorithm runtime

spanning tree will have |V | − 1 edges
each edge added connects a new vertex

choosing each edge
naive — scan all edges each time |E| work
better — maintain priority queue of vertices, priority=cost of best edge

up to |E| inserts or decreaseKeys (update best edge for vertex)

max size of priority queue: |V | − 1

Θ(|E| log |V |) time with binary heap
Θ(|E| + |V | log |V |) time with Fibanocci heap
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Prim’s algorithm pseudocode

set<Edge> used_edges; // where result goes
priority_queue<Vertex> pending_vertices;
map<Vertex, Edge> best_edge_to;
for (Vertex v : vertices) {

pending_vertices.insert(INFINITY, v);
}
pending_vertices.decreaseKey(0, start_vertex);
while (!pending_vertices.empty()) {

Vertex v = pending_vertices.deleteMin();
used_edges.insert(best_edge_to[v]);
for (Edge e : edgesFrom(v)) {

if (e.cost < best_edge_to[e.to].cost) {
best_edge_to[e.to] = e;
if (e.to in pending_vertices)

pending_vertices.decreaseKey(e.cost, e.to);
}

}
}
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Kruskal’s greedy MST algorithm

track: edges in spanning tree

while spanning tree has less than |V | − 1 edges:

pick a minimum weight edge (u, v) such that
adding it to the spanning tree would not create a cycle

add the edge to the spanning tree
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Kruskal’s algorithm example
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Kruskal: tracking sets (1)

set ABCD

set FG

set E
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track sets of edges
same set — already connected
goal: add edges that connect distinct sets
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Kruskal: tracking sets (2)

set ABCD

set FG

set E set E

set ABCDFG
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Kruskal pseudocode

SetTracker setTracker;
for (Vertex v : vertices) {

setTracker.createNewSetFor(v);
}
vector<Edge> result;
for (Edge e : sortByWeight(edges)) {

// check if adding edge would connect unconnected sets
if (setTracker.setIdOf(e.from) != setTracker.setIdOf(e.to)) {

result.push_back(e);
setTracker.mergeSets(

setTracker.setIdOf(e.from),
setTracker.setIdOf(e.to)

);
}
if (result.size() == vertices.size() − 1) break;

}
return result;
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Kruskal runtime

need to sort all edges (|E| log |E| time)

for each edge: (|E| times)
two “find the set something is in” operations

for each edge added: (|V | − 1 times)
one “merge two sets” operations

overall: Θ(|E| log |E|) = Θ(|E| log |V |) time
aside: log |V | ∈ Θ(log |E|) since |V |2 ≥ |E| ≥ |V | − 1
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union-find data structure

SetTracker called a “union-find datastructure” or “disjoint-set
datastructure”

best implementation: slightly worse than amortized constant time
per operation

amortized O(α(n)) time where α(n) is the inverse of the Ackermann
function
α(n) is asymptotically smaller than log(n)
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Kruskal runtime

need to sort all edges (|E| log |E| time)

for each edge: (|E| times) O(|E|α(|V|))
two “find the set something is in” operations

for each edge added: (|V | − 1 times) O(|V|α(|V|))
one “merge two sets” operations

overall: Θ(|E| log |E|) = Θ(|E| log |V |) time
aside: log |V | ∈ Θ(log |E|) since |V |2 ≥ |E| ≥ |V | − 1
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implementing union-find: naive/slow

map<Vertex, Vertex> parentOf;
MakeInitialSets() {

for (Vertex v : vertices)
parentOf[v] = v;

}
// Each set represented by its "root" vertex
Vertex FindSetOf(Vertex v) {

if (v == parentOf[v]) {
return v;

} else {
return FindSetOf(parentOf[v]);

}
}
UnionSets(Vertex u, Vertex v) {

parentOf[v] = u;
} 97



union-find graphs

set ABCD
id = A

set FG
id = F

set E
id = E

set E
id = E

set ABCDFG
id = F
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);
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implementing union-find: path compression

...
FindSetOf(Vertex v) {

if (v == parentOf[v]) {
return v;

} else {
parentOf[v] = FindSetOf(parentOf[v]);
return parentOf[v];

}
}

shortcut future searches for loop
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implementing union-find: union by size

map<Vertex, int> sizeOf; // SetId -> # of vertices in set
MakeInitialSets() {

for(...)
sizeOf[v] = 1;

}

UnionOf(Vertex u, Vertex v) {
if (sizeOf[u] > sizeOf[v]) {

(u,v) = (v,u);
}
// attach lower size to higher size
parentOf[u] = v;

// update size
sizeOf[v] += sizeOf[u];

} 100



graph summary (1)

directed (digraph) versus undirected

topological sort — ordering of vertices in digraph
intuition: find vertex w/ no in-edge, delete

shortest path — minimum edges from one vertex to another
unweighted: breadth-first search — queue — distance 1 then 2 then 3
weighted: Dijkstra’s — priority queue — visit veritices ordered by best
distance
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graphs summary (2)

traveling salesperson problem — minimum ‘tour’ — visit all, then
return

NP-hard — essentially “try everything” worst case
speedup: stop search early if not better than known best
speedup: avoid rechecking subproblems (e.g. shortest path from A to D
visiting A,B,C,D)
speedup: heuristics

spanning tree — tree (no cycles) connecting all vertices of
connected graph
minimum spanning tree — spanning tree with min sum of edge
weights

finding: greedy — choose smallest edges first
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aside: MST to approximate TSP

TSP special case: triangle rule applies

w(a → b) ≤ w(a → c) + w(c → b)

one “good” solution: find MST

do an (e.g.) pre-order traversal of the tree

use that as the tour

A

B C

D E

103



aside: MST to approximate TSP

TSP special case: triangle rule applies

w(a → b) ≤ w(a → c) + w(c → b)

one “good” solution: find MST

do an (e.g.) pre-order traversal of the tree

use that as the tour

A

B C

D E

103



MST as good TSP approx

context: triangle rule, use MST pre-order traversal as TSP

worst weight: 2 × MST
edges not in MST: weight not worse than path through tree
result: use every edge twice (to get to node, to get back)

observation: best TSP - one edge = a spanning tree

→ weight of MST ≥ best TSP solution (= some ST + one edge)

→ above TSP — at most 2x as bad as best

A

B C
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MST to TSP example
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