
graphs

1

vertices and edges

vertices or nodes

edges

1

2

34

5
1

2

34

5

1

2

34

5
1

2

34

5
directed graph

or
digraph

undirected graph

2

vertices and edges

vertices or nodes

edges

1

2

34

5
1

2

34

5

1

2

34

5
1

2

34

5
directed graph

or
digraph

undirected graph

2

vertices and edges

vertices or nodes

edges

1

2

34

5
1

2

34

5

1

2

34

5
1

2

34

5
directed graph

or
digraph

undirected graph

2

vertices and edges

vertices or nodes

edges

1

2

34

5
1

2

34

5

1

2

34

5
1

2

34

5
directed graph

or
digraph

undirected graph

2

vertices and edges

vertices or nodes

edges

1

2

34

5
1

2

34

5

1

2

34

5
1

2

34

5
directed graph

or
digraph

undirected graph

2

example graphs

lots of things can be represented as graphs

3

maps

nodes: intersections?
edges: roads?

image: open street map 4

airline routes

image: openflights 5

flowcharts

6

pre-requisite tree

CS 2110, SW
Dev Methods

CS 2150, Prog
& Data Rep

CS 3240, Adv
SW Dev Tech

CS 111x, Intro
to Program'ing

CS 2102,
Discrete Math

CS 4102,
Algorithms

CS 2330, Dig
Logic Design

CS 3330,
Comp Arch

CS 2190,
CS Seminar

CS 4414,
Oper Sys

;All CS electives CS 4444,
Parallel Comp

CS 4330, Adv
Comp Arch

CS 4457,
Networks

CS 4458,
Internet Eng.

CS 4434,
Dependable

CS 4620,
Compilers

CS 3102,
Theory Comp

CS 3205,
HCI

Spring only

7

formal definition

graph G: G = (V, E)

V : set of vertices (possibly empty)

E: set of edges — pairs of vertices (possibly empty)
directed graph/digraph — ordered pairs
undirected graph — unordered pairs

8

paths, etc.

vertices v and w adjacent iff (v, w) ∈ E or (w, v) ∈ E

path: v1, v2, . . . vn such that (vi, vi+1) ∈ E for 1 ≤ i ≤ n

length of path: number of edges in path

simple path: path of distinct vertices

9

weighted graphs

some graphs have weights or costs associated with edges

example motivation:
graph representing roads: weight = travel time

weight or cost of a path = sum of weights of edges in path

10

weighted graph example

Charlottesville

Culpeper

DC

Richmond

Fredericksburg
46

73

72
58

53

35

11

cycles, etc.

cycle: path where length ≥ 1, v1 = vn

undirected graph: …and no repeated edges

A
B

C
D
E X

Y

R
Q

Z

A
B

C
D
E X

Y

R
Q

Z

A
B

C
D
E X

Y

R
Q

Z

A

B

C

D

E

F

G

X

Y

ZS

Q

R

A

B

C

D

E

F

G

X

Y

ZS

Q

R

A

B

C

D

E

F

G

X

Y

ZS

Q

R

A

B

C

D

E

F

G

X

Y

ZS

Q

R

12

loops

(v, v) ∈ E

A

13

graph terminology is not universal

some sources will use slightly different definitions:

walk instead of path

path instead of simple path

closed walk instead of cycle

cycle instead of cycle that is also a simple path

14

connectivity

connected graph: for all x, y ∈ V , there exists a path from x to y
N.B: includes 0-length paths

A

B

CD

a connected graph
A

B

C

D E

F

a non-connected graph

15

in a directed graph…

DAG — directed acyclic graph
no cycles

strongly connected — path from every vertex to every other
implies cycles (or digraph of 0 or 1 nodes)

weakly connected — would be connected as undirected graph

16

strong/weak connected examples

a strongly connected graph
drawn in two ways

A

B

C

D E

F

G

A

B

CD

E
F

G

another strongly
connected graph

E

F

G H

I

A

B

C

D

a weakly connected graph

a

b

c

d

e

f

g

two strongly connected components

17

strong/weak connected examples

a strongly connected graph
drawn in two ways

A

B

C

D E

F

G

A

B

CD

E
F

G

another strongly
connected graph

E

F

G H

I

A

B

C

D

a weakly connected graph

a

b

c

d

e

f

g

two strongly connected components

17

trees as graphs

trees are connected, acyclic graphs
(with a root chosen)

18

complete graph

complete graph: graph with edges between every pair of distinct
vertices

1
2

3

4

5
6

7

8

9

10

19

adjacency matrix

A[u][v] =
weight if (u, v) ∈ E

0 otherwise

1 2 3 4
1 0 1 1 1
2 0 0 1 0
3 0 0 0 0
4 1 0 0 0

1

2

3

4

1 2 3 4
1 9 17 0 0
2 0 0 13 0
3 0 0 0 10
4 0 16 18 0

17

13

16

18

9

1 2

3

4

20

adjacency matrix

A[u][v] =
weight if (u, v) ∈ E

0 otherwise

1 2 3 4
1 0 1 1 1
2 0 0 1 0
3 0 0 0 0
4 1 0 0 0

1

2

3

4

1 2 3 4
1 9 17 0 0
2 0 0 13 0
3 0 0 0 10
4 0 16 18 0

17

13

16

18

9

1 2

3

4

20

adjacency matrix

A[u][v] =
weight if (u, v) ∈ E

0 otherwise

1 2 3 4
1 0 1 1 1
2 0 0 1 0
3 0 0 0 0
4 1 0 0 0

1

2

3

4

1 2 3 4
1 9 17 0 0
2 0 0 13 0
3 0 0 0 10
4 0 16 18 0

17

13

16

18

9

1 2

3

4

20

adjacency matrix

A[u][v] =
weight if (u, v) ∈ E

0 otherwise

1 2 3 4
1 0 1 1 1
2 0 0 1 0
3 0 0 0 0
4 1 0 0 0

1

2

3

4

1 2 3 4
1 9 17 0 0
2 0 0 13 0
3 0 0 0 10
4 0 16 18 0

17

13

16

18

9

1 2

3

4

20

adjacency lists

1

2

3

4

2 3 4 NULL

3 NULL

NULL

1 NULL

1

2

3

4

21

adjacency lists

1

2

3

4

2 3 4 NULL

3 NULL

NULL

1 NULL

1

2

3

4

21

choosing representations

choice:
adjacency matrix
adjacency list
more?

issues to consider:
size
ease of listing edges from node
ease of determining if node X has an edge
…

22

variations and alternate representations

adjacency lists might not use linked lists

adjacency matrix can be stored as hashtable (keys=pair of nodes)

…

23

additional information with nodes

often want to store additional information with vertices, edges…

street names, speed limits, …

IP addresses, link speeds, …

…

24

topological sort

only defined for directed acyclic graph
order vertices such that if there is a path from vi to vj, then vj is
after vi

F

H

G

E

C

D
B

A

topological sorts:
A, F, C, B, D, G, E, H or
F, A, H, C, G, B, D, E or
…

25

exercise: topological sort

A

B D

C

possible answers: A, B, C, D or A, C, B, D

26

exercise: topological sort

A

B D

C possible answers: A, B, C, D or A, C, B, D

26

no topological sort
A

B D

C

27

pre-requisite tree

CS 2110, SW
Dev Methods

CS 2150, Prog
& Data Rep

CS 3240, Adv
SW Dev Tech

CS 111x, Intro
to Program'ing

CS 2102,
Discrete Math

CS 4102,
Algorithms

CS 2330, Dig
Logic Design

CS 3330,
Comp Arch

CS 2190,
CS Seminar

CS 4414,
Oper Sys

;All CS electives CS 4444,
Parallel Comp

CS 4330, Adv
Comp Arch

CS 4457,
Networks

CS 4458,
Internet Eng.

CS 4434,
Dependable

CS 4620,
Compilers

CS 3102,
Theory Comp

CS 3205,
HCI

Spring only

28

definition: in-degree

indegree of vertex: number of incoming edges

F
0

H
1

G
2

E
2

C
2

D
2

B
2

A
0

29

algorithm (simple)

psuedocode:
vector<Vertex> topologicalSort(Graph g) {

vector<Vertex> result;
for (int i = 0; i < numVertices; ++i) {

Vertex v = g.findVertexOfInDegreeZero();
if (did not find v) throw CycleFound();
result.push_back(v);
for (Vertex w : v.adjacentVertices()) {

g.deleteEdge(v, w);
}
g.deleteVertex(v);

}
return result;

}

30

example

F

H

G

E

C

D
B

A

initial in-degree 0 vertices — two choiceschoose one (A — arbitrary),
add to result, remove edgesone in-degree 0 vertex: F

result: A,

31

example

F

H

G

E

C

D
B

A initial in-degree 0 vertices — two choices

choose one (A — arbitrary),
add to result, remove edgesone in-degree 0 vertex: F

result: A,

31

example

F

H

G

E

C

D
B

A

initial in-degree 0 vertices — two choices

choose one (A — arbitrary),
add to result, remove edges

one in-degree 0 vertex: F

result: A,

31

example

F

H

G

E

C

D
B

A

initial in-degree 0 vertices — two choiceschoose one (A — arbitrary),
add to result, remove edges

one in-degree 0 vertex: F

result: A,

31

example

F

H

G

E

C

D
B

A

initial in-degree 0 vertices — two choiceschoose one (A — arbitrary),
add to result, remove edgesone in-degree 0 vertex: F

result: A, F,

31

example

F

H

G

E

C

D
B

A

initial in-degree 0 vertices — two choiceschoose one (A — arbitrary),
add to result, remove edgesone in-degree 0 vertex: F

result: A, F, H,

31

example

F

H

G

E

C

D
B

A

initial in-degree 0 vertices — two choiceschoose one (A — arbitrary),
add to result, remove edgesone in-degree 0 vertex: F

result: A, F, H,

31

example

F

H

G

E

C

D
B

A

initial in-degree 0 vertices — two choiceschoose one (A — arbitrary),
add to result, remove edgesone in-degree 0 vertex: F

result: A, F, H, C,

31

example

F

H

G

E

C

D
B

A

initial in-degree 0 vertices — two choiceschoose one (A — arbitrary),
add to result, remove edgesone in-degree 0 vertex: F

result: A, F, H, C, B, G,

31

example

F

H

G

E

C

D
B

A

initial in-degree 0 vertices — two choiceschoose one (A — arbitrary),
add to result, remove edgesone in-degree 0 vertex: F

result: A, F, H, C, B, G, D,

31

example

F

H

G

E

C

D
B

A

initial in-degree 0 vertices — two choiceschoose one (A — arbitrary),
add to result, remove edgesone in-degree 0 vertex: F

result: A, F, H, C, B, G, D, E,

31

simple topological sort problems

problem: copying the graph?

problem: finding in-degree 0 vertex?
scan all vertices and all edges???

32

better pseudocode

vector<Vertex> topologicalSort(Graph g) {
vector<Vertex> result;
map<Vertex, int> remainingInDegree = g.getInDegrees();

Queue<Vertex> pending;
for (Vertex v : g.vertices())

if (remainingInDegree[v] == 0)
pending.enqueue(v);

while (!pending.empty()) {
Vertex v = pending.dequeue();
result.push_back(v);
for (Edge e: g.edgesFrom(v)) {

int newDegree = −−remainingInDegree[e.toVertex()];
if (newDegree == 0) pending.enqueue(e.toVertex());

}
}
return result;

} 33

psuedocode idea

track in-degree changes instead of full list of edges
all we care about is in-degree becoming 0

queue: vertices which have in-degree 0 to process

detect cycles? see if result size == number of vertices

34

runtime analysis

assuming |E| edges, |V | vertices, and adjacency lists
and in-degree map is constant time (e.g. vertices are 0, 1, 2, …, so it’s
an array)

step 1: get all in-degrees
Θ(|E|) (iterate over edges)

step 2: find + enqueue in-degree 0 vertices
Θ(|V |) (iterate over vertices)

step 3: for each vertex, check outgoing edges
Θ(|V | + |E|) (each vertex checked exactly once, each edge checked
exactly once)

overall: Θ(|V | + |E|)
35

example

A
0

F
1

G
2

B
3

C
11

D
0

E
1

H
1

queue: A, D,

result:

36

example

A
0

F
1

G
2

B
3

C
11

D
0

E
1

H
1

queue: A, D,

result:

36

example

A
0

F
0

G
1

B
3

C
11

D
0

E
1

H
1

queue: A, D, F,

result: A,

36

example

A
0

F
0

G
1

B
3

C
11

D
0

E
0

H
0

queue: A, D, F, H, E,

result: A, D,

36

example

A
0

F
0

G
1

B
3

C
00

D
0

E
0

H
0

queue: A, D, F, H, E, C,

result: A, D, F,

36

example

A
0

F
0

G
1

B
2

C
00

D
0

E
0

H
0

queue: A, D, F, H, E, C,

result: A, D, F, H,

36

example

A
0

F
0

G
1

B
1

C
00

D
0

E
0

H
0

queue: A, D, F, H, E, C,

result: A, D, F, H, E,

36

example

A
0

F
0

G
1

B
0

C
00

D
0

E
0

H
0

queue: A, D, F, H, E, C, B,

result: A, D, F, H, E, C,

36

example

A
0

F
0

G
0

B
0

C
00

D
0

E
0

H
0

queue: A, D, F, H, E, C, B, G,

result: A, D, F, H, E, C, B,

36

example

A
0

F
0

G
0

B
0

C
00

D
0

E
0

H
0

queue: A, D, F, H, E, C, B, G,

result: A, D, F, H, E, C, B, G

36

shortest path

shortest path

lowest {weight,number of edges} path from vertex i to j

37

shortest path applications

map routing

N degrees of separation’

Internet routing

puzzle/game analysis (e.g. rubrik’s cube solutions, …)

38

shortest path algorithm kinds

single pair: path from V to W

single source: for each vertex W , path from V to W

all pairs: for each pair of vertices V, W , path from V to W

39

shortest path algorithm kinds

single pair: path from V to W

single source: for each vertex W , path from V to W

all pairs: for each pair of vertices V, W , path from V to W

39

more formally

given graph G = (V, E) and a vertex s (the source)…

where an edges (v, w) has weight wv,w

for each vertex x find a path v1 = s, v2, . . . , vn = x such that the∑
wvi,vi+1 is minimum

40

breadth-first search

shortest path special case: weights = 1

algorithm is breadth-first search

41

special case: breadth-first search on trees

can look at breadth-first search as variation on pre-order traversal

same idea: parents before children

but whole level at a time…

and need to ignore extra paths

42

breadth first search intuition

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, …
A

B C D E

G H I J

K LM

key idea: track visited nodes
so we don’t check them again
(already found the shortest path)

could have list of paths, one per node
but more compact idea:
store one source edge per node
also called shortest path tree

multiple possible answers!

43

breadth first search intuition

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, …
A

B C D E

G H I J

K LM

key idea: track visited nodes
so we don’t check them again
(already found the shortest path)

could have list of paths, one per node
but more compact idea:
store one source edge per node
also called shortest path tree

multiple possible answers!

43

breadth first search intuition

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, …
A

B C D E

G H I J

K LM

key idea: track visited nodes
so we don’t check them again
(already found the shortest path)

could have list of paths, one per node
but more compact idea:
store one source edge per node
also called shortest path tree

multiple possible answers!

43

breadth first search intuition

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, …
A

B C D E

G H I J

K LM

key idea: track visited nodes
so we don’t check them again
(already found the shortest path)

could have list of paths, one per node
but more compact idea:
store one source edge per node
also called shortest path tree

multiple possible answers!

43

breadth first search intuition

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, …
A

B C D E

G H I J

K LM

key idea: track visited nodes
so we don’t check them again
(already found the shortest path)

could have list of paths, one per node
but more compact idea:
store one source edge per node
also called shortest path tree

multiple possible answers!

43

breadth first search intuition

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, …
A

B C D E

G H I J

K LM

key idea: track visited nodes
so we don’t check them again
(already found the shortest path)

could have list of paths, one per node
but more compact idea:
store one source edge per node
also called shortest path tree

multiple possible answers!

43

breadth first search intuition

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, …
A

B C D E

G H I J

K LM

key idea: track visited nodes
so we don’t check them again
(already found the shortest path)

could have list of paths, one per node
but more compact idea:
store one source edge per node
also called shortest path tree

multiple possible answers!

43

breadth first search intuition

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, …
A

B C D E

G H I J

K LM

key idea: track visited nodes
so we don’t check them again
(already found the shortest path)

could have list of paths, one per node
but more compact idea:
store one source edge per node
also called shortest path tree

multiple possible answers!

43

breadth first search pseudocode

void Graph::bfs(Vertex start) {
for (Vertex v: vertices) {

v.distance = INFINITY; v.previous = NULL;
}
Queue frontier;
start.distance = 0;
frontier.enqueue(start);
while (!frontier.isEmpty()) {

Vertex v = q.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

if (w.distance == INFINITY) {
w.distance = v.distance + 1;
w.previous = v;
frontier.enqueue(w);

}
}

}
}

44

BFS runtime?

need to initialize distances to infinity: Θ(|V |) operations

need to check every edge: Θ(|E|) operations

runtime Θ(|V | + |E|)

45

breadth-first search is greedy

greedy algorithms: make the locally optimal choice, never undo

BFS: once one finds a node, one enqueues it once
find the node later — skip it

why this is okay: find nodes in order of distance

second time ‘visiting’ a node — won’t be a shorter path!

46

add weights: a broken idea

void Graph::BROKEN_shortestPaths(Vertex start) {
...
while (!frontier.isEmpty()) {
Vertex v = q.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

// BROKEN!
if (w.distance == INFINITY) {

w.distance = v.distance + weightOfEdge(v, w);
w.previous = v;
frontier.enqueue(w);

}
}

}
}

}

50

50
110

A

B

C

distance 50
previous: A

distance
previous:

47

add weights: a broken idea

void Graph::BROKEN_shortestPaths(Vertex start) {
...
while (!frontier.isEmpty()) {
Vertex v = q.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

// BROKEN!
if (w.distance == INFINITY) {

w.distance = v.distance + weightOfEdge(v, w);
w.previous = v;
frontier.enqueue(w);

}
}

}
}

}

50

50
110

A

B

C

distance 50
previous: A

distance
previous:

47

add weights: a broken idea

void Graph::BROKEN_shortestPaths(Vertex start) {
...
while (!frontier.isEmpty()) {
Vertex v = q.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

// BROKEN!
if (w.distance == INFINITY) {

w.distance = v.distance + weightOfEdge(v, w);
w.previous = v;
frontier.enqueue(w);

}
}

}
}

}

50

50
110

A

B

C

distance 50
previous: A

distance ∞
previous: (none)

47

add weights: a broken idea

void Graph::BROKEN_shortestPaths(Vertex start) {
...
while (!frontier.isEmpty()) {
Vertex v = q.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

// BROKEN!
if (w.distance == INFINITY) {

w.distance = v.distance + weightOfEdge(v, w);
w.previous = v;
frontier.enqueue(w);

}
}

}
}

}

50

50
110

A

B

C

distance 50
previous: A

distance 110
previous: A

47

add weights: a broken idea

void Graph::BROKEN_shortestPaths(Vertex start) {
...
while (!frontier.isEmpty()) {
Vertex v = q.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

// BROKEN!
if (w.distance == INFINITY) {

w.distance = v.distance + weightOfEdge(v, w);
w.previous = v;
frontier.enqueue(w);

}
}

}
}

}

50

50
110

A

B

C

distance 50
previous: A

distance 110
previous: A

47

fix part 1: update to smaller distance

void Graph::BROKEN_shortestPaths(Vertex start) {
...
while (!frontier.isEmpty()) {
Vertex v = q.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

int newDistance = v.distance + weightOfEdge(v, w);
if (newDistance < w.distance) {

w.distance = newDistance;
w.previous = v;
frontier.enqueue(w);

}
}

}
}

}

problem: now enqueuing nodes multiple times
want to only visit node once

48

fix part 1: update to smaller distance

void Graph::BROKEN_shortestPaths(Vertex start) {
...
while (!frontier.isEmpty()) {
Vertex v = q.dequeue();
for (Vertex w : verticesWithEdgeFrom(v)) {

int newDistance = v.distance + weightOfEdge(v, w);
if (newDistance < w.distance) {

w.distance = newDistance;
w.previous = v;
frontier.enqueue(w);

}
}

}
}

}

problem: now enqueuing nodes multiple times
want to only visit node once

48

fix part 2: visit nodes once, order by distance

void Graph::SLOW_shortestPaths(Vertex start) {
for (Vertex v: vertices) {

v.distance = INFINITY;
v.previous = NULL;
v.visited = false;

}
start.distance = 0;
while (!haveUnvisitedNode()) {

Vertex v = findUnvisitedNodeWithSmallestDistance();
v.visited = true;
for (Vertex w : verticesWithEdgeFrom(v)) {

int newDistance = v.distance + weightOfEdge(v, w);
if (newDistance < w.distance) {

w.distance = newDistance;
w.previous = v;

}
}

}
} 49

visiting by distance?

assumption: no negative weights

given this: distance only decreases

and can’t find shorter path from further node!

50

fix part 3: a faster search
void Graph::shortestPaths(Vertex start) {

PriorityQueue pq;
for (Vertex v: vertices) {

v.distance = INFINITY; v.previous = NULL;
}
start.distance = 0; pq.insert(0, start);
while (!pq.empty()) {

Vertex v = pq.deleteMin();
for (Vertex w : verticesWithEdgeFrom(v)) {

int oldDistance = w.distance;
int newDistance = v.distance + weightOfEdge(v, w);
if (newDistance < oldDistance) {

w.distance = newDistance; w.previous = v;
if (oldDistance == INFINITY)

pq.insert(newDistance, w);
else

pq.decreaseKey(newDistance, w);
}

}
}

}
51

a note on names

called Dijkstra’s algorithm

52

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C

D

B

F

E

G

dist prev path
A 0 — A
B ∞ — —
C ∞ — —
D ∞ — —
E ∞ — —
F ∞ — —
G ∞ — —

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

53

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3
A

C

D

B

F

E

G

dist prev path
A 0 — A
B ∞ — —
C 2 A A→C
D 1 A A→D
E ∞ — —
F ∞ — —
G ∞ — —

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

53

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C

D

B

F

E

G

dist prev path
A 0 — A
B 6 D A→D→B
C 2 A A→C
D 1 A A→D
E 2 D A→D→E
F 7 D A→D→F
G 6 D A→D→G

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

53

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C
D

B

F

E

G

dist prev path
A 0 — A
B 6 D A→D→B
C 2 A A→C
D 1 A A→D
E 2 D A→D→E
F 4 C A→C→F
G 6 D A→D→G

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C) 53

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C

D

B

F

E

G

dist prev path
A 0 — A
B 3 E A→D→E→B
C 2 A A→C
D 1 A A→D
E 2 D A→D→E
F 4 C A→C→F
G 6 D A→D→G

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

53

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C

D

B

F

E

G

dist prev path
A 0 — A
B 3 E A→D→E→B
C 2 A A→C
D 1 A A→D
E 2 D A→D→E
F 4 C A→C→F
G 6 D A→D→G

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

53

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C

D

B

F

E

G

dist prev path
A 0 — A
B 3 E A→D→E→B
C 2 A A→C
D 1 A A→D
E 2 D A→D→E
F 4 C A→C→F
G 6 D A→D→G

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

53

Dijkstra’s algorithm example 1

21

2

1

2

5
1

65

1

10

3

A

C

D

B

F

E

G

dist prev path
A 0 — A
B 3 E A→D→E→B
C 2 A A→C
D 1 A A→D
E 2 D A→D→E
F 4 C A→C→F
G 6 D A→D→G

D is adjacent —
but not a shorter path

F updated from distance 7 (via D)
to distance 4 (via C)

53

Dijkstra’s algorithm example 2

7

9

14

10

15

11

2

6

9

A

B

C

G

D

E

dist prev path
A 0 — A
B ∞ — —
C ∞ — —
D ∞ — —
E ∞ — —
G ∞ — —

54

Dijkstra’s algorithm example 2

7

9

14

10

15

11

2

6

9
A

B

C

G

D

E

dist prev path
A 0 — A
B 7 A A→B
C 9 A A→C
D ∞ — —
E ∞ — —
G 14 A A→G

54

Dijkstra’s algorithm example 2

7

9

14

10

15

11

2

6

9

A

B

C

G

D

E

dist prev path
A 0 — A
B 7 A A→B
C 9 A A→C
D 22 B A→B→D
E ∞ — —
G 14 A A→G

54

Dijkstra’s algorithm example 2

7

9

14

10

15

11

2

6

9

A

B

C

G

D

E

dist prev path
A 0 — A
B 7 A A→B
C 9 A A→C
D 20 C A→C→D
E ∞ — —
G 11 C A→C→G

54

Dijkstra’s algorithm example 2

7

9

14

10

15

11

2

6

9

A

B

C

G

D

E

dist prev path
A 0 — A
B 7 A A→B
C 9 A A→C
D 20 C A→C→D
E 20 G A→C→G→E
G 11 C A→C→G

54

Dijkstra’s algorithm example 2

7

9

14

10

15

11

2

6

9

A

B

C

G

D

E

dist prev path
A 0 — A
B 7 A A→B
C 9 A A→C
D 20 C A→C→D
E 20 G A→C→G→E
G 11 C A→C→G

54

Dijkstra’s algorithm example 2

7

9

14

10

15

11

2

6

9

A

B

C

G

D

E

dist prev path
A 0 — A
B 7 A A→B
C 9 A A→C
D 20 C A→C→D
E 20 G A→C→G→E
G 11 C A→C→G

54

Dijkstra’s algorithm runtime

for every vertex (worst case):

find unprocessed vertex with smallest distance
Θ(|V |2) total — if checking every vertex
Θ(|V | log |V |) total — if removing from heap

scan all edges of vertex, update distances
Θ(|E|) total — if not maintaining priority queue
Θ(|E| log |V |) if updating binary heap

total with binary heap: Θ((|E| + |V |) log |V |)
Fibanocci heap instead: Θ(|E| + |V | log |V |)

55

negative weights

example: weight = fuel used; negative weight = refueling

Dijkstra’s algorithm doesn’t work
assumption: won’t update a node’s distance after visiting its edges

alternative algorithms do — e.g. Bellman-Ford (Θ(|E||V |) runtime)

negative cost cycles — infinitely small cost!

56

high-level view: dealing with negative weights

Bellman-Ford algorithm

for every node: track shortest known path from source
initially: “no known paths”

iterate through all edges updating paths
Q: “can this edge be used to make a better path to source?”

repeat |V | times

57

single-source to single-source+destination

what if want to get from A to Z

solution: Dijkstra’s algorithm from A but stop early — when we
proesss Z

gaurentee: won’t update Z’s distance again

58

heuristic shortest path

road map — still slow!

some ideas for speeding up:
search highways instead of side-roads earlier
search edges in correct direction earlier
search from both directions, try to meet
…

if you take AI — major topic is heuristic search
taking advantage of ideas like the above
…and still getting shortest path, if you want it

59

travelling salesperson problem

given cities, costs to travel between, least-cost trip that:
visits each city exactly once, and
returns to the starting city

as a graph:
cities = vertices
costs = edge weights

assume fully connected graph
alternative: first add infinite weight edges between disconnected nodes

60

TSP difficulty

solving TSP exactly is NP-hard

worst case: essentially need to enumerate all possible tours
but, practically solved up to 10000s of cities on ‘real’ maps

obviously doing something smarter…

61

diversion: NP-hard

see also Algorithms

idea: efficient solutions to this problem yield efficient solutions to
many other problems

→ “as hard as” those other problems

other problems ≈ problems whose solutions can be verified in
polynomial time

62

some definitions

Hamiltonian path — path that visits every vertex on a graph
exactly once

Hamiltonian cycle — Hamiltonian path that where start node =
end node

traveling salesperson problem: find least weight Hamiltonian cycle

63

Hamiltonian cycles and hardness

no known efficient algorithm to detect whether a graph has a
Hamiltonian cycle

(but easy for complete graphs…)

64

naive TSP algorithm

choose a starting city x1

for each unused next city x2: (n-1 possible)
for each unused next city x3: (n-2 possible)

for each unused next city x4: (n-3 possible)
…

see if x1, x2, x3, x4, . . . , xn is shorter than anything else

output shortest seen

(N − 1)! factorial runtime = Θ(N !)
worse than Θ(2N)

65

naive TSP implementation

vector<Vertex> partial_tour; vector<Vertex> best_tour;
void TestTours() {

if (partial_tour.size() == vertices.size()) {
partial_tour.push_back(partial_tour[0]);
if (weightOf(partial_tour) < weightOf(best_tour)) {

best_tour = partial_tour;
}
partial_tour.pop_back();

} else {
for (Vertex v : vertices − partial_tour) {

partial_tour.push_back(v);
TestTours();
partial_tour.pop_back(v);

}
}

}
TSP() {

best_tour = ...; partial_tour = {startNode};
TestTours();
return best_tour;

}

66

naive TSP implementation

vector<Vertex> partial_tour; vector<Vertex> best_tour;
void TestTours() {

if (partial_tour.size() == vertices.size()) {
partial_tour.push_back(partial_tour[0]);
if (weightOf(partial_tour) < weightOf(best_tour)) {

best_tour = partial_tour;
}
partial_tour.pop_back();

} else {
for (Vertex v : vertices − partial_tour) {

partial_tour.push_back(v);
TestTours();
partial_tour.pop_back(v);

}
}

}
TSP() {

best_tour = ...; partial_tour = {startNode};
TestTours();
return best_tour;

}

66

naive TSP implementation

vector<Vertex> partial_tour; vector<Vertex> best_tour;
void TestTours() {

if (partial_tour.size() == vertices.size()) {
partial_tour.push_back(partial_tour[0]);
if (weightOf(partial_tour) < weightOf(best_tour)) {

best_tour = partial_tour;
}
partial_tour.pop_back();

} else {
for (Vertex v : vertices − partial_tour) {

partial_tour.push_back(v);
TestTours();
partial_tour.pop_back(v);

}
}

}
TSP() {

best_tour = ...; partial_tour = {startNode};
TestTours();
return best_tour;

}

66

(n-1)! is big

20 cities — > 1016 tours to check

30 cities — > 1030 tours to check

…

67

best gaurenteed TSP algorithm

TSP is NP-hard — no known subexponetial solution
best general algorithm: Θ(N22N)

20 cities — > 108 operations
30 cities — > 1011 operations

uses dynamic programming — covered in 4102

solve subproblems: best way to visit cities 1, 2, 3, 4 starting at 1
ending at 4
know: if 1, 3, 2, 4 is best for above subproblem, then 1, 3, 2, 4, 5, 1 is
shorter than 1, 2, 3, 4, 5, 1
can avoid checking 1, 2, 3, 4, 5, 1…

68

best gaurenteed TSP algorithm

TSP is NP-hard — no known subexponetial solution
best general algorithm: Θ(N22N)

20 cities — > 108 operations
30 cities — > 1011 operations

uses dynamic programming — covered in 4102

solve subproblems: best way to visit cities 1, 2, 3, 4 starting at 1
ending at 4
know: if 1, 3, 2, 4 is best for above subproblem, then 1, 3, 2, 4, 5, 1 is
shorter than 1, 2, 3, 4, 5, 1
can avoid checking 1, 2, 3, 4, 5, 1…

68

TSP heuristics

one idea: branch and bound

still: construct lots and lots of possible tours
keep adding cities

but maintain track extra numbers:
the best cost found so far
lower bound on the tours we could find with chosen nodes

stop enumerating (return from FindTour early) if lower bound is
too low

69

a lower bound

example lower bound:

if I’ve chosen cities 1, 2, 4, 3 in that order

minimum cost = w(1, 2) + w(2, 4) + w(4, 3) +
n∑

i=3
min edge from i

if min possible cost > best known cost: stop!

70

other TSP ideas

TSP on real maps — take advantage of geometry

try cities close to each other first

use map distances to compute minimum costs quickly

sometimes can use approximation algorithms
assumption: sufficiently ‘normal’ weights — e.g. A-B shorter than A-C-B
gaurenteed within a certain factor of best solution
good for pruning very bad solutions quickly

71

TSP records

2006: 85, 900 ‘cities’

distances, etc. from real circuit production problem from the 1980s

72

lab 11

pre-lab: topological sort

in-lab: naive travelling salesperson (map = Tolkein’s middle earth)

post-lab: some acceleration techniques

73

spanning tree definition

given a connected undirected graph G, a spanning tree G′ = (V, E ′) is
a subgraph such that:

its edges are a subset of the original graph’s (what subgraph means)

it has the same vertices

it is connected

it has no cycles — i.e. it is a tree

74

spanning tree construction

take a connected graph

repeatedly: remove an edge that does not disconnect the graph

can’t remove any more:
now have a spanning tree — same vertices, but is a tree

75

spanning tree examples

A

B

C

D

E

original graph

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

spanning trees
of graph

76

almost a spanning tree?

Edgware
Road

Stratford
International

Star Lane

Stratford High Street

Abbey Road

Leyton

Leytonstone

Stratford

Bromley-By-Bow

West
Ham

East
Putney

Putney
Bridge

Plaistow

Canary
Wharf

North
Greenwich

Canning
Town

Dollis
Hill

Neasden

Willesden
Green

Archway

Tufnell
Park

Clapham
South

Hampstead

Brent
Cross

Golders
Green

Clapham
Common

Clapham
North

Arsenal

Holloway
Road

Finsbury
Park

Manor
House

Brixton

All
Saints

Devons
Road

Poplar

Blackwall

East
India

Pudding
Mill Lane

Heron
Quays

West India Quay

Roya
Victor

Crossharbour &
London Arena

Mudchute

South
Quay

Cutty
Sark

Greenwich

Island
Gardens

Deptford
Bridge

Elverson
Road

Lewisham

Chiswick
Park

Bow
Church

Harlesden

Willesden
Junction

Kensal
Green

Mile
End

East
Acton

North
Acton

Shepherd's
Bush

Hammersmith

Bow
Road

Turnham
Green

Fulham
Broadway

Parsons
Green

Ravenscourt
Park

Stepney
Green

Stamford
Brook

Goldhawk
Road

Latimer
Road

Finchley
Road

Swiss
Cottage

West
Hampstead

Kilburn Belsize
Park

Chalk
Farm

Camden
Town

Kentish
Town

Stockwell

Caledonian
Road

Highbury &
Islington

Limehouse

Westferry

Baker
Street

Marylebone
Regent's
Park

Charing
Cross

Embankment

Picadilly
Circus

Paddington

Elephant &
Castle

Lambeth
North

Waterloo

Queens
Park

Kilburn
Park

Maida
Vale

Warwick
Avenue

Oxford
Circus

Bank

Liverpool
Street

St. Paul's

Bethnal
Green

Bond
Street

Marble
Arch

Chancery
Lane

Holborn

Tottenham
Court Road

Holland
Park

Notting
Hill Gate Lancaster

GateQueensway

Aldgate

Tower
Hill

Great
Portland

Street

Barbican
Farringdon

Moorgate

Bayswater Blackfriars

Mansion
HouseTemple Cannon

Street

Westminster

Euston
Square

King's Cross
St. Pancras

Gloucester
Road

High Street
Kensington

South
Kensington

Sloane
Square

Victoria
St. James's
Park

Aldgate
East

Whitechapel

Barons
Court

West
Kensington

Earl's
Court

Kensington
(Olympia)

West
Brompton

Canada
Water

Wapping

Shadwell

Ladbroke
Grove

Westbourne
Park

Royal
Oak

St. John's
Wood

Bermondsey

London
Bridge

Green Park

Southwark

Angel

Old
Street

Borough

Euston

Mornington
Crescent

Leicester
Square

Kennington

Warren
Street

Goodge
Street

Oval

Covent
Garden

Hyde Park
Corner

Russell
Square

Knightsbridge

Pimlico

Vauxhall

Monument
Tower
Gateway

Zone 1

1km

1mi

Zone 2

Zone 2Zone 2

Zone 2

Zone 1

Zone 3

Zone 3

Zone 3

Zone 3

Wood Lane

Edgware
Road

White City

Shepherd's
Bush Market

https://commons.wikimedia.org/wiki/File:London_Underground_Zone_2.svg 77

https://commons.wikimedia.org/wiki/File:London_Underground_Zone_2.svg

minimum spanning tree

A minimum spanning tree T = (V, E ′) of a weighted graph G is
a spanning tree such that

∑
e∈E′

weight(e) is smallest.

NB: can be multiple minimum spanning trees

78

minimum spanning tree algorithms

two main algorithms

both greedy — choose edges, then never take that back

tricky part: figuring out what order to choose them in

…and (not this class) proving that’s optimal

79

TSP example (1)

(13 509 us cities)

via U Waterloo: http://www.math.uwaterloo.ca/tsp/ 80

http://www.math.uwaterloo.ca/tsp/

TSP example (2)

(49 603 sites on Nat’l Register of Historic Places)

via U Waterloo: http://www.math.uwaterloo.ca/tsp/ 81

http://www.math.uwaterloo.ca/tsp/

MST example

0.7916524443317322.043065366458222.61021773852578683.0557083800480362

3.122107411784057

3.674469189499639

4.079861813052808

0.8818722233682245

1.8231065073329242

2.1104177339338562.315330611508605

2.3313863574286815

2.9855039258397786

0.8420604219511568
1.30559299271642741.4023796620684448

2.9894926499283514

3.343778216433141
3.80455679430202984.0015906629880895

1.1040695658430248

1.6890335869489561
2.2647678681598666

3.14674733586472843.8108198049869477
4.000673598002293

1.2365946527410185

3.1764209776260985

3.393163112099029

3.7539711598729233

3.97046556675163

1.9390952874712843

2.55667250618792832.879881715203522.948960529939049

4.732983889313895

1.00334180946710073.773552581564443

4.725790833225335

2.08479293280193232.3974062900950965

2.908634383802017

3.0657635289780263

3.2564793104537357

1.2802350293361668
2.6584945366487416

3.6123580832116406

0.7556462007733193
2.8295266775568666

3.631509992648511

4.0981319042622622.423311884583378

2.9909103749206793

2.074230534431218

3.4978387439040985
4.384602462511943 3.761199182692469

3.1565560200399294

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

82

Prim’s greedy MST algorithm

track: vertices in spanning tree, edges in spanning tree

add a vertex to the spanning tree (arbitrarily)

while not all vertices are in the spanning tree:

pick an edge (u, v) such that
u is already in the spanning tree
v is not already in the spanning tree
(u, v) has the smallest weight of all possible edges

add the edge and v to the spanning tree

83

Prim’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (A, B)(A, D), (A, B), (C, D)(A, D), (A, B), (C, D), (D, G)(A, D), (A, B), (C, D), (D, G), (F, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)

84

Prim’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (A, B)(A, D), (A, B), (C, D)(A, D), (A, B), (C, D), (D, G)(A, D), (A, B), (C, D), (D, G), (F, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)

84

Prim’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)

(A, D), (A, B)(A, D), (A, B), (C, D)(A, D), (A, B), (C, D), (D, G)(A, D), (A, B), (C, D), (D, G), (F, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)

84

Prim’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)

(A, D), (A, B)

(A, D), (A, B), (C, D)(A, D), (A, B), (C, D), (D, G)(A, D), (A, B), (C, D), (D, G), (F, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)

84

Prim’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (A, B)

(A, D), (A, B), (C, D)

(A, D), (A, B), (C, D), (D, G)(A, D), (A, B), (C, D), (D, G), (F, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)

84

Prim’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (A, B)(A, D), (A, B), (C, D)

(A, D), (A, B), (C, D), (D, G)

(A, D), (A, B), (C, D), (D, G), (F, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)

84

Prim’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (A, B)(A, D), (A, B), (C, D)(A, D), (A, B), (C, D), (D, G)

(A, D), (A, B), (C, D), (D, G), (F, G)

(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)

84

Prim’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (A, B)(A, D), (A, B), (C, D)(A, D), (A, B), (C, D), (D, G)(A, D), (A, B), (C, D), (D, G), (F, G)

(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)

(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)

84

Prim’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (A, B)(A, D), (A, B), (C, D)(A, D), (A, B), (C, D), (D, G)(A, D), (A, B), (C, D), (D, G), (F, G)(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)

(A, D), (A, B), (C, D), (D, G), (F, G), (E, G)
84

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

85

Prim’s algorithm runtime

spanning tree will have |V | − 1 edges
each edge added connects a new vertex

choosing each edge
naive — scan all edges each time |E| work
better — maintain priority queue of vertices, priority=cost of best edge

up to |E| inserts or decreaseKeys (update best edge for vertex)

max size of priority queue: |V | − 1

Θ(|E| log |V |) time with binary heap
Θ(|E| + |V | log |V |) time with Fibanocci heap

86

Prim’s algorithm pseudocode

set<Edge> used_edges; // where result goes
priority_queue<Vertex> pending_vertices;
map<Vertex, Edge> best_edge_to;
for (Vertex v : vertices) {

pending_vertices.insert(INFINITY, v);
}
pending_vertices.decreaseKey(0, start_vertex);
while (!pending_vertices.empty()) {

Vertex v = pending_vertices.deleteMin();
used_edges.insert(best_edge_to[v]);
for (Edge e : edgesFrom(v)) {

if (e.cost < best_edge_to[e.to].cost) {
best_edge_to[e.to] = e;
if (e.to in pending_vertices)

pending_vertices.decreaseKey(e.cost, e.to);
}

}
}

87

Kruskal’s greedy MST algorithm

track: edges in spanning tree

while spanning tree has less than |V | − 1 edges:

pick a minimum weight edge (u, v) such that
adding it to the spanning tree would not create a cycle

add the edge to the spanning tree

88

Kruskal’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (F, G)(A, D), (F, G), (A, B)(A, D), (F, G), (A, B), (C, D)(A, D), (F, G), (A, B), (C, D), (D, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)

89

Kruskal’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (F, G)(A, D), (F, G), (A, B)(A, D), (F, G), (A, B), (C, D)(A, D), (F, G), (A, B), (C, D), (D, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)

89

Kruskal’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)

(A, D), (F, G)(A, D), (F, G), (A, B)(A, D), (F, G), (A, B), (C, D)(A, D), (F, G), (A, B), (C, D), (D, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)

89

Kruskal’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)

(A, D), (F, G)

(A, D), (F, G), (A, B)(A, D), (F, G), (A, B), (C, D)(A, D), (F, G), (A, B), (C, D), (D, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)

89

Kruskal’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (F, G)

(A, D), (F, G), (A, B)

(A, D), (F, G), (A, B), (C, D)(A, D), (F, G), (A, B), (C, D), (D, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)

89

Kruskal’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (F, G)(A, D), (F, G), (A, B)

(A, D), (F, G), (A, B), (C, D)

(A, D), (F, G), (A, B), (C, D), (D, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)

89

Kruskal’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (F, G)(A, D), (F, G), (A, B)(A, D), (F, G), (A, B), (C, D)

(A, D), (F, G), (A, B), (C, D), (D, G)

(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)

89

Kruskal’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (F, G)(A, D), (F, G), (A, B)(A, D), (F, G), (A, B), (C, D)(A, D), (F, G), (A, B), (C, D), (D, G)

(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)

(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)

89

Kruskal’s algorithm example

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

(A, D)(A, D), (F, G)(A, D), (F, G), (A, B)(A, D), (F, G), (A, B), (C, D)(A, D), (F, G), (A, B), (C, D), (D, G)(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)

(A, D), (F, G), (A, B), (C, D), (D, G), (E, G)
89

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal’s algorithm example

A

B

C

D
E

F

G

H

I

J

K

L

M

N

O

P

Q

90

Kruskal: tracking sets (1)

set ABCD

set FG

set E

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

track sets of edges
same set — already connected
goal: add edges that connect distinct sets

91

Kruskal: tracking sets (2)

set ABCD

set FG

set E set E

set ABCDFG

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

92

Kruskal pseudocode

SetTracker setTracker;
for (Vertex v : vertices) {

setTracker.createNewSetFor(v);
}
vector<Edge> result;
for (Edge e : sortByWeight(edges)) {

// check if adding edge would connect unconnected sets
if (setTracker.setIdOf(e.from) != setTracker.setIdOf(e.to)) {

result.push_back(e);
setTracker.mergeSets(

setTracker.setIdOf(e.from),
setTracker.setIdOf(e.to)

);
}
if (result.size() == vertices.size() − 1) break;

}
return result;

93

Kruskal runtime

need to sort all edges (|E| log |E| time)

for each edge: (|E| times)
two “find the set something is in” operations

for each edge added: (|V | − 1 times)
one “merge two sets” operations

overall: Θ(|E| log |E|) = Θ(|E| log |V |) time
aside: log |V | ∈ Θ(log |E|) since |V |2 ≥ |E| ≥ |V | − 1

94

union-find data structure

SetTracker called a “union-find datastructure” or “disjoint-set
datastructure”

best implementation: slightly worse than amortized constant time
per operation

amortized O(α(n)) time where α(n) is the inverse of the Ackermann
function
α(n) is asymptotically smaller than log(n)

95

Kruskal runtime

need to sort all edges (|E| log |E| time)

for each edge: (|E| times) O(|E|α(|V|))
two “find the set something is in” operations

for each edge added: (|V | − 1 times) O(|V|α(|V|))
one “merge two sets” operations

overall: Θ(|E| log |E|) = Θ(|E| log |V |) time
aside: log |V | ∈ Θ(log |E|) since |V |2 ≥ |E| ≥ |V | − 1

96

implementing union-find: naive/slow

map<Vertex, Vertex> parentOf;
MakeInitialSets() {

for (Vertex v : vertices)
parentOf[v] = v;

}
// Each set represented by its "root" vertex
Vertex FindSetOf(Vertex v) {

if (v == parentOf[v]) {
return v;

} else {
return FindSetOf(parentOf[v]);

}
}
UnionSets(Vertex u, Vertex v) {

parentOf[v] = u;
} 97

union-find graphs

set ABCD
id = A

set FG
id = F

set E
id = E

set E
id = E

set ABCDFG
id = F

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

2

4

1

3

10

2
5

7

8

4

6

1

A

B

C

D

E

F

G

Union(
IdOf(D),
IdOf(G)

);

98

implementing union-find: path compression

...
FindSetOf(Vertex v) {

if (v == parentOf[v]) {
return v;

} else {
parentOf[v] = FindSetOf(parentOf[v]);
return parentOf[v];

}
}

shortcut future searches for loop

99

implementing union-find: path compression

...
FindSetOf(Vertex v) {

if (v == parentOf[v]) {
return v;

} else {
parentOf[v] = FindSetOf(parentOf[v]);
return parentOf[v];

}
}

shortcut future searches for loop

99

implementing union-find: union by size

map<Vertex, int> sizeOf; // SetId -> # of vertices in set
MakeInitialSets() {

for(...)
sizeOf[v] = 1;

}

UnionOf(Vertex u, Vertex v) {
if (sizeOf[u] > sizeOf[v]) {

(u,v) = (v,u);
}
// attach lower size to higher size
parentOf[u] = v;

// update size
sizeOf[v] += sizeOf[u];

} 100

graph summary (1)

directed (digraph) versus undirected

topological sort — ordering of vertices in digraph
intuition: find vertex w/ no in-edge, delete

shortest path — minimum edges from one vertex to another
unweighted: breadth-first search — queue — distance 1 then 2 then 3
weighted: Dijkstra’s — priority queue — visit veritices ordered by best
distance

101

graphs summary (2)

traveling salesperson problem — minimum ‘tour’ — visit all, then
return

NP-hard — essentially “try everything” worst case
speedup: stop search early if not better than known best
speedup: avoid rechecking subproblems (e.g. shortest path from A to D
visiting A,B,C,D)
speedup: heuristics

spanning tree — tree (no cycles) connecting all vertices of
connected graph
minimum spanning tree — spanning tree with min sum of edge
weights

finding: greedy — choose smallest edges first
102

aside: MST to approximate TSP

TSP special case: triangle rule applies

w(a → b) ≤ w(a → c) + w(c → b)

one “good” solution: find MST

do an (e.g.) pre-order traversal of the tree

use that as the tour

A

B C

D E

103

aside: MST to approximate TSP

TSP special case: triangle rule applies

w(a → b) ≤ w(a → c) + w(c → b)

one “good” solution: find MST

do an (e.g.) pre-order traversal of the tree

use that as the tour

A

B C

D E

103

MST as good TSP approx

context: triangle rule, use MST pre-order traversal as TSP

worst weight: 2 × MST
edges not in MST: weight not worse than path through tree
result: use every edge twice (to get to node, to get back)

observation: best TSP - one edge = a spanning tree

→ weight of MST ≥ best TSP solution (= some ST + one edge)

→ above TSP — at most 2x as bad as best

A

B C

104

MST as good TSP approx

context: triangle rule, use MST pre-order traversal as TSP

worst weight: 2 × MST
edges not in MST: weight not worse than path through tree
result: use every edge twice (to get to node, to get back)

observation: best TSP - one edge = a spanning tree

→ weight of MST ≥ best TSP solution (= some ST + one edge)

→ above TSP — at most 2x as bad as best

A

B C

104

MST as good TSP approx

context: triangle rule, use MST pre-order traversal as TSP

worst weight: 2 × MST
edges not in MST: weight not worse than path through tree
result: use every edge twice (to get to node, to get back)

observation: best TSP - one edge = a spanning tree

→ weight of MST ≥ best TSP solution (= some ST + one edge)

→ above TSP — at most 2x as bad as best

A

B C

104

MST to TSP example

A

B

C

D
E

F

G

pre-order traversal
from root F:
F,
B, E, A,
G, D, C,

1

23

4
5

6

7

105

MST to TSP example

A

B

C

D
E

F

G
pre-order traversal
from root F:
F,
B, E, A,
G, D, C,

1

23

4
5

6

7

105

MST to TSP example

A

B

C

D
E

F

G
pre-order traversal
from root F:
F,
B, E, A,
G, D, C,

1

23

4
5

6

7

105

MST to TSP example

A

B

C

D
E

F

G
pre-order traversal
from root F:
F,
B, E, A,
G, D, C,

1

23

4
5

6

7

105

	briefly: vertices and edges
	examples
	road networks
	airplane routes
	flowcharts
	prerequisite diagrams
	web pages
	example: sizes

	formal definitions
	vertices, edges
	paths and path lengths and simple paths
	weights or costs
	cycles and loops
	a note on alternative definitions
	connectivity, DAGs
	special graph: complete graph

	representing graphs
	adjacency matrices
	adjacency lists
	choosing representations

	topological sort
	problem definition
	definition: in-degree
	algorithm

	the shortest path problem
	informal definition
	applications
	single-pair versus single-source versus all pairs

	breath-first search (unweighted single-source shortest)
	aside: greedy algorithms

	Dijkstra's algorithm (weighted single-source shortest)
	example
	runtime and data structures
	aside: dropping the negative edges assumption

	shortest path application: map routing
	travelling salesperson
	definition: Hamiltonian path/cycle
	various TSP algorithms
	TSP records

	lab 11 preview
	minimum spanning tree
	definition: spanning tree
	example: possible spanning trees
	definition: minimum spanning tree
	greedy MST algorithm: Prim's
	greedy MST algorithm: Kruskal's

	summary
	diversion: MST to approximate TSP

