
Course Intro / Logistics

1



layers of abstraction: programs (1)

Objects, etc.map.insert(key, value)

High-level lang.: C++x += y

Assembly: X86-64/IBCMadd rax, rbx

Machine code: IBCM1110 1111

Hardware: (not this course)

2



layers of abstraction: data (2)

Data Structuresstring, map<int, int>

Arrayschar data[10]

Primitive Typeschar data

Addresses/Memory@ 0x9cdf4123: 0x12

Bits01101011

3



lectures

I (Charles Reiss) will audio+screenrecord my lectures
intend to find a way to post them later in the same day
suggest VLC for viewing (supports changing speed!)
how posted (where on webiste, etc.) to-be-determined

lecture attendence is strongly recommended, but …

I won’t check

4



different lecturers?

Mark Floryan also teaches this class

we are giving seperate lectures

different slidedecks
but similar
I made my slides by looking at Floryan’s…
(but have some different preferences/style than him…)

5



homeworks AKA labs

weekly assignments with three parts:

pre-lab due Tuesday morning

in-lab done physically in the lab section you are registered for

post-lab due Friday morning

6



course staff

lecturers: Mark Floryan and I (Charles Reiss)

more than 20 TAs

some graduate student graders

7



announcements

course twitter feed — @UVaCS2150
shown on Collab

emails to class — very sparingly

8



prerequisites

C- or better in CS2110 or CS 2220
references, classes, objects, generics (or templates)
control structures, procedures, recursion
writing programs longer than a screenful

C- or better in CS2102
logarithms, sets, graphs
proof techniques, including by contradiciton

9



CS2102 as co-requisite

you may take CS2102 as a co-requisite instead

but at your own risk

we may ask exam questions that require CS2102 material

10



lab swapping

no, we cannot
change lab you are enrolled in ourselves
increase lab capacities beyond 45 (fire marshall limits)

to switch to an open lab, you can use “Edit Class” in SIS
do not drop the course and readd (you may end up on the waitlist)

if you and another student want to swap labs,
Engineering main office in Thornton A122 may be able to do this

you can try to find students to do this with on Piazza

11



honor-related policies

do not share your code

do not look at another student’s code

do not try to hack the submission system

do not share midterm details with students who haven’t taken it yet

do not release your source code online

when we ask for assembly files, do not submit compiler-generated
files unless otherwise allowed

you must not do your work in a public github repo

probably the lab is about writing assembly,
not using compilers…

past student, present student, …

12



honor-related policies

do not share your code

do not look at another student’s code

do not try to hack the submission system

do not share midterm details with students who haven’t taken it yet

do not release your source code online

when we ask for assembly files, do not submit compiler-generated
files unless otherwise allowed

you must not do your work in a public github repo

probably the lab is about writing assembly,
not using compilers…

past student, present student, …

12



honor-related policies

do not share your code

do not look at another student’s code

do not try to hack the submission system

do not share midterm details with students who haven’t taken it yet

do not release your source code online

when we ask for assembly files, do not submit compiler-generated
files unless otherwise allowed

you must not do your work in a public github repo

probably the lab is about writing assembly,
not using compilers…

past student, present student, …

12



honor-related policies

do not share your code

do not look at another student’s code

do not try to hack the submission system

do not share midterm details with students who haven’t taken it yet

do not release your source code online

when we ask for assembly files, do not submit compiler-generated
files unless otherwise allowed

you must not do your work in a public github repo

probably the lab is about writing assembly,
not using compilers…

past student, present student, …

12



academic honesty

we will refer to honor violations/cheating to the honor commitee

we will also give you an F in the course for them

13



grading

45% labs

30% midterms — in lab!

25% final exam

14



midterms

20 February

3 April

15



late policy

see discussion linked from first lab
summary (1): -25% for first 24 hours
summary (2): you can request an extension for any in-lab

lab due times are strictly enforced

16

https://markfloryan.github.io/pdr/uva/labduedates.html


compilation

does not compile = no credit
copy and paste error? we are not going to fix it

the lab submission system tells you if it compiles

17



final exam

7 May at 7PM

tell us if you have a conflict this month
via support request link in git repo (later)

conflict = cannot attend the exam
(e.g. another exam at same time)
exams at other times on 7 May is not a conflict

18



accounts

Unix lab acccounts (Olsson 001, Rice 340)
you should get an email

Collab account

Piazza account (created when you log in first)

19

https://collab.itc.virginia.edu
https://piazza.com


git

revision control system

repositories (“repos”) of stuff

tracks changes

commonly used for group work

20



course git repo

online at
view of files: https://github.com/markfloryan/pdr/
website view: https://markfloryan.github.io/pdr/

you can get a local copy (which is part of the first lab)

21

https://github.com/markfloryan/pdr/
https://markfloryan.github.io/pdr/


outside of the git repo

course tools (linked from git)
support requests
lab submission and regrades
office hour queue

Collab: mailing list, anonymous feedback, grading guidelines

22



getting a copy of the repo

(already done on the supplied VM image)
need to have git installed
git command to get a copy of the repo (run once):

git clone https://github.com/markfloryan/pdr.git

creates pdr directory containing:
slides, labs, tutorials, etc.

(this command is in the first lab)
you do not need a github account

23



updating your copy of the repo

change into the pdr directory:

gitcommand:

git pull

(this command is in the first lab)

error messages? you do not have the latest version

24



future assignments

preliminary future assignments in repo

may be changed up until they are released
start early? you must figure out what these changes are

official release: announcement on twitter feed
Wednesday/Thursday before due week

25



Unix environment

you will use a Unix environment in this course

required before the first in-lab

options for your personal machine:
a virtual machine (recommended for Windows)
OS X: natively by installing developer tools
install Linux, etc. on your machine

options otherwise:
use the lab machines physically

but we share them with other courses

26



other pre-lab tasks

complete a Unix tutorial

edit and compile some C++ code

27



our VM setup

tutorial in repo

download virtualbox

download our VM image (2.5GB — suggest using University
network)

login student (“L33T Haxor” in interface); password password

28

https://markfloryan.github.io/pdr/tutorials/01-intro-unix/virtual-box.html


demo

29



questions, etc.?

Piazza

support request tool
linked off website (later)
preferred way for individual concerns

office hours (faculty and TA)
Google calendar linked off website

my (or Floryan’s) office if door is open

anonymous feedback on Collab
visible to both instructors

30

https://libra.cs.virginia.edu/~pedagogy/index.php?redirect=support.php


office hours

will start next week

announced on calendar (linked from git)

mine in Rice 205
if my door is open, I might talk otherwise

Floryan in Rice 203

TAs in Stacks (Thornton A120)

31



office hours and privacy

I generally will not close my door in my office hours

arrange a separate time if you have sensitive matters to discuss

32



layers of abstraction: programs (1)

Objects, etc.map.insert(key, value)

High-level lang.: C++x += y

Assembly: X86-64/IBCMadd rax, rbx

Machine code: IBCM1110 1111

Hardware: (not this course)

33



layers of abstraction: data (2)

Data Structuresstring, map<int, int>

Arrayschar data[10]

Primitive Typeschar data

Addresses/Memory@ 0x9cdf4123: 0x12

Bits01101011

34



data structures

linked lists

stacks

queues

hash tables

heaps

trees

etc.

35



comparing list data structures (1)

benchmark: (linked in git repo (later))
insert 50 000 elements (even integers 0 to 100 000)
search for 50 000 elements (0 to 25 000)
delete 10 000 elements

on my desktop, Java 8, median of 3 consecutive runs

Data structure Runtime
Vector 0.703 s
ArrayList 0.700 s
LinkedList 2.037 s
HashSet 0.002 s
TreeSet 0.010 s

HashSet/TreeSet
more than 350/50x faster
than Vector/ArrayList

LinkedList
3x slower than
than Vector/ArrayList

36



comparing list data structures (1)

benchmark: (linked in git repo (later))
insert 50 000 elements (even integers 0 to 100 000)
search for 50 000 elements (0 to 25 000)
delete 10 000 elements

on my desktop, Java 8, median of 3 consecutive runs
Data structure Runtime
Vector 0.703 s
ArrayList 0.700 s
LinkedList 2.037 s
HashSet 0.002 s
TreeSet 0.010 s

HashSet/TreeSet
more than 350/50x faster
than Vector/ArrayList

LinkedList
3x slower than
than Vector/ArrayList

36



comparing list data structures (1)

benchmark: (linked in git repo (later))
insert 50 000 elements (even integers 0 to 100 000)
search for 50 000 elements (0 to 25 000)
delete 10 000 elements

on my desktop, Java 8, median of 3 consecutive runs
Data structure Runtime
Vector 0.703 s
ArrayList 0.700 s
LinkedList 2.037 s
HashSet 0.002 s
TreeSet 0.010 s

HashSet/TreeSet
more than 350/50x faster
than Vector/ArrayList

LinkedList
3x slower than
than Vector/ArrayList

36



comparing list data structures (1)

benchmark: (linked in git repo (later))
insert 50 000 elements (even integers 0 to 100 000)
search for 50 000 elements (0 to 25 000)
delete 10 000 elements

on my desktop, Java 8, median of 3 consecutive runs
Data structure Runtime
Vector 0.703 s
ArrayList 0.700 s
LinkedList 2.037 s
HashSet 0.002 s
TreeSet 0.010 s

HashSet/TreeSet
more than 350/50x faster
than Vector/ArrayList

LinkedList
3x slower than
than Vector/ArrayList

36



comparing list data structures (1)

benchmark: (linked in git repo (later))
insert 50 000 elements (even integers 0 to 100 000)
search for 50 000 elements (0 to 25 000)
delete 10 000 elements

on my desktop, Java 8, median of 3 consecutive runs
Data structure Runtime
Vector 0.703 s
ArrayList 0.700 s
LinkedList 2.037 s
HashSet 0.002 s
TreeSet 0.010 s

HashSet/TreeSet
more than 350/50x faster
than Vector/ArrayList

LinkedList
3x slower than
than Vector/ArrayList

36



comparing list data structures (2)
Data structure Total Insert Search Delete
Vector 0.703 0.002 0.507 0.194
ArrayList 0.700 0.001 0.507 0.192
LinkedList 2.037 0.002 1.521 0.514
HashSet 0.002 0.002 0.000 0.000
TreeSet 0.010 0.007 0.002 0.001
Vector, sorted 0.024 0.001 0.002 0.021

search is where most the time goes (followed by delete)vector is slow mostly because searching unsorted listand then delete time starts mattering

benchmark not precise enough
to measure insert time differences
except for TreeSet

TreeSet worse than HashSet?
in this benchmark, yes
but not other benchmarks

LinkedList worse than ArrayList?
in this benchmark, yes
but not other benchmarks

37



comparing list data structures (2)
Data structure Total Insert Search Delete
Vector 0.703 0.002 0.507 0.194
ArrayList 0.700 0.001 0.507 0.192
LinkedList 2.037 0.002 1.521 0.514
HashSet 0.002 0.002 0.000 0.000
TreeSet 0.010 0.007 0.002 0.001
Vector, sorted 0.024 0.001 0.002 0.021

search is where most the time goes (followed by delete)

vector is slow mostly because searching unsorted listand then delete time starts mattering

benchmark not precise enough
to measure insert time differences
except for TreeSet

TreeSet worse than HashSet?
in this benchmark, yes
but not other benchmarks

LinkedList worse than ArrayList?
in this benchmark, yes
but not other benchmarks

37



comparing list data structures (2)
Data structure Total Insert Search Delete
Vector 0.703 0.002 0.507 0.194
ArrayList 0.700 0.001 0.507 0.192
LinkedList 2.037 0.002 1.521 0.514
HashSet 0.002 0.002 0.000 0.000
TreeSet 0.010 0.007 0.002 0.001
Vector, sorted 0.024 0.001 0.002 0.021

search is where most the time goes (followed by delete)

vector is slow mostly because searching unsorted list

and then delete time starts mattering

benchmark not precise enough
to measure insert time differences
except for TreeSet

TreeSet worse than HashSet?
in this benchmark, yes
but not other benchmarks

LinkedList worse than ArrayList?
in this benchmark, yes
but not other benchmarks

37



comparing list data structures (2)
Data structure Total Insert Search Delete
Vector 0.703 0.002 0.507 0.194
ArrayList 0.700 0.001 0.507 0.192
LinkedList 2.037 0.002 1.521 0.514
HashSet 0.002 0.002 0.000 0.000
TreeSet 0.010 0.007 0.002 0.001
Vector, sorted 0.024 0.001 0.002 0.021

search is where most the time goes (followed by delete)vector is slow mostly because searching unsorted list

and then delete time starts mattering

benchmark not precise enough
to measure insert time differences
except for TreeSet

TreeSet worse than HashSet?
in this benchmark, yes
but not other benchmarks

LinkedList worse than ArrayList?
in this benchmark, yes
but not other benchmarks

37



comparing list data structures (2)
Data structure Total Insert Search Delete
Vector 0.703 0.002 0.507 0.194
ArrayList 0.700 0.001 0.507 0.192
LinkedList 2.037 0.002 1.521 0.514
HashSet 0.002 0.002 0.000 0.000
TreeSet 0.010 0.007 0.002 0.001
Vector, sorted 0.024 0.001 0.002 0.021

search is where most the time goes (followed by delete)vector is slow mostly because searching unsorted listand then delete time starts mattering

benchmark not precise enough
to measure insert time differences
except for TreeSet

TreeSet worse than HashSet?
in this benchmark, yes
but not other benchmarks

LinkedList worse than ArrayList?
in this benchmark, yes
but not other benchmarks

37



comparing list data structures (2)
Data structure Total Insert Search Delete
Vector 0.703 0.002 0.507 0.194
ArrayList 0.700 0.001 0.507 0.192
LinkedList 2.037 0.002 1.521 0.514
HashSet 0.002 0.002 0.000 0.000
TreeSet 0.010 0.007 0.002 0.001
Vector, sorted 0.024 0.001 0.002 0.021

search is where most the time goes (followed by delete)vector is slow mostly because searching unsorted listand then delete time starts mattering

benchmark not precise enough
to measure insert time differences
except for TreeSet

TreeSet worse than HashSet?
in this benchmark, yes
but not other benchmarks

LinkedList worse than ArrayList?
in this benchmark, yes
but not other benchmarks

37



comparing list data structures (2)
Data structure Total Insert Search Delete
Vector 0.703 0.002 0.507 0.194
ArrayList 0.700 0.001 0.507 0.192
LinkedList 2.037 0.002 1.521 0.514
HashSet 0.002 0.002 0.000 0.000
TreeSet 0.010 0.007 0.002 0.001
Vector, sorted 0.024 0.001 0.002 0.021

search is where most the time goes (followed by delete)vector is slow mostly because searching unsorted listand then delete time starts mattering

benchmark not precise enough
to measure insert time differences
except for TreeSet

TreeSet worse than HashSet?
in this benchmark, yes
but not other benchmarks

LinkedList worse than ArrayList?
in this benchmark, yes
but not other benchmarks

37



comparing list data structures (3)

same benchmark, 10x original sizes:
Data structure Total Insert Search Delete
Vector 87.818 0.004 63.202 24.612 s
ArrayList 87.192 0.010 62.470 24.712 s
LinkedList 263.776 0.006 196.550 67.439 s
HashSet 0.029 0.022 0.003 0.004 s
TreeSet 0.134 0.110 0.017 0.007 s
Vector, sorted 2.642 0.009 0.024 2.609 s

linked lists still 3x slower than vector…
…but 350x faster became 3000x faster because of larger size
we will learn asymptotic analysis to predict this

38



comparing list data structures (3)

same benchmark, 10x original sizes:
Data structure Total Insert Search Delete
Vector 87.818 0.004 63.202 24.612 s
ArrayList 87.192 0.010 62.470 24.712 s
LinkedList 263.776 0.006 196.550 67.439 s
HashSet 0.029 0.022 0.003 0.004 s
TreeSet 0.134 0.110 0.017 0.007 s
Vector, sorted 2.642 0.009 0.024 2.609 s

linked lists still 3x slower than vector…

…but 350x faster became 3000x faster because of larger size
we will learn asymptotic analysis to predict this

38



comparing list data structures (3)

same benchmark, 10x original sizes:
Data structure Total Insert Search Delete
Vector 87.818 0.004 63.202 24.612 s
ArrayList 87.192 0.010 62.470 24.712 s
LinkedList 263.776 0.006 196.550 67.439 s
HashSet 0.029 0.022 0.003 0.004 s
TreeSet 0.134 0.110 0.017 0.007 s
Vector, sorted 2.642 0.009 0.024 2.609 s

linked lists still 3x slower than vector…

…but 350x faster became 3000x faster because of larger size
we will learn asymptotic analysis to predict this

38



time/space analysis

theoretical analysis of time or space usage
theoretical = can do without implementing
…but doesn’t capture all the details

general technique — not just data structures

focus: how usage will grow as data gets larger

‘big picture’ — ignore small factors (e.g. using floats versus
doubles)

39



layers of abstraction: data (2)

Data Structuresstring, map<int, int>

Arrayschar data[10]

Primitive Typeschar data

Addresses/Memory@ 0x9cdf4123: 0x12

Bits01101011

40



the hardware/software interface

how do computers execute programs?
what the processor wants — assembly/machine language
how the processor works: the fetch-execute cycle
what compilers are actually doing

how do computers store value?
representing all sorts of numbers as bits
the illusion of fast storage: the memory hierarchy

41



course goals (Floryan’s list)

42


