
Big-Oh
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asymptotic growth rate or order

compare two functions, but…
ignore constant factors, small inputs

example: f (n) = 1 000 000 · n2; g(n) = 2n

g grows faster — eventually much bigger than f
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ignore behavior here
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preview: what functions?

example: comparing sorting algorithms

runtime = f (size of input)
e.g. seconds to sort = f(number of elements in list)
e.g. # operations to sort = f(number of elements in list)

space = f (size of input)
e.g. number of bytes of memory = f(number of elements in list)
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theory, not empirical

yes, you can make guesses about big-oh behavior from
measurements
but, no, graphs 6= big-oh comparison

what happens further to the right?
might not have tested big enough

want to write down formula

example: summing a list of n items:
exactly n addition operations
assume each one takes k unit of time
runtime = f(n) = kn
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recall: comparing list data structures

List benchmark (from intro slides) w/ 100000 elements
Data structure Total Insert Search Delete
Vector 87.818 0.004 63.202 24.612 s
ArrayList 87.192 0.010 62.470 24.712 s
LinkedList 263.776 0.006 196.550 67.439 s
HashSet 0.029 0.022 0.003 0.004 s
TreeSet 0.134 0.110 0.017 0.007 s
Vector, sorted 2.642 0.009 0.024 2.609 s

some runtimes get really big as size gets large…others seem to remain manageableproblem: growth rate of runtimes with list size
for Vector (unsorted), ArrayList, LinkedList…
# operations grows like n where n is list size
for HashSet…
# operations per search/remove is constant (sort of)

for TreeSet, sorted Vector…
# operations per search grows like log(n) where n is list size
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why asymptotic analysis?

“can my program work when data gets big?”
website gets thousands of new users?
text editor opening 1MB book? 1 GB log file?
music player sees 1 000 song collection? 50 000?
text search on 100 petabyte copy of the text of the web?

if asymptotic analysis says “no”
can find out before implementing algorithm
won’t be fixed by, e.g., buying a faster CPU
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sets of functions

define sets of functions based on an example f

Ω(f ): grow no slower than f (“≥ f”)

O(f ): grow no faster than f (“≤ f”)

Θ(f ) = Ω(f ) ∩ O(f ): grow as fast as f (“= f”)

examples:
n3 ∈ Ω(n2)
100n ∈ O(n2)
10n2 + n ∈ Θ(n2) — ignore constant factor, etc.

and 10n2 + n ∈ O(n2) and 10n2 + n ∈ Ω(n2)
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what are we measuring

f(n) = worst case running time
n = input size — as a positive integer

will comapre f to another function g(n)
example: f (n) ∈ O(g(n)) (or f ∈ O(g))

informally: “f is big-oh of g”

example f (n) 6∈ Ω(g(n)) or (g 6∈ Ω(g))
informally: “f ‘ is not big-omega of g”
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worst case?

this class: almost always worst cases

intuition: detect if program will ever take “forever”

example: iterating through an array until we find a value
best case: look at one value, it’s the one we want
worst case: look at every value, none of them are what we want

f (n) is run time of slowest input of size n
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formal definitions

f (n) ∈ O(g(n)):
there exists c > 0 and n0 > 0 such that
for all n > n0, f (n) ≤ c · g(n)

f (n) ∈ Ω(g(n)):
there exists c > 0 and n0 > 0 such that
for all n > n0, f (n) ≥ c · g(n)

f (n) ∈ Θ(g(n)):
f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))
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formal definition example (1)

f (n) ∈ O(g(n)) if and only if
there exists c > 0 and n0 > 0 such that
f (n) ≤ c · g(n) for all n > n0

Is n ∈ O(n2):

choose c = 1, n0 = 2
for n > 2 = n0: n ≤ c · n2 = n2

Yes!
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formal definition example (2)

f (n) ∈ O(g(n)) if and only if
there exists c > 0 and n0 > 0 such that
f (n) ≤ c · g(n) for all n > n0

Is 10n ∈ O(n)?

choose c = 11, n0 = 2
for n > 2 = n0: f(n) = 10n ≤ c · g(n) = 11n
Yes!

don’t need to choose smallest possible c
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negating formal definitions

f ∈ O(g): there exists c, n0 > 0 so for all n > n0: f (n) ≤ cg(n)

f 6∈ O(g):
there does not exist c, n0 > 0 so for all n > n0: f(n) ≤ cg(n)
for all c, n0, there exists n > n0: f(n) > cg(n)
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formal definition example (3)

f (n) ∈ O(g(n)) if and only if
there exists c > 0 and n0 > 0 such that
f (n) ≤ c · g(n) for all n > n0

Is n2 ∈ O(n)?

no — consider any c, n0 > 0
consider nbad = (c + 100)(n0 + 100) > n0
n2

bad = (c + 100)2(n0 + 100)2 > c(c + 100)(n0 + 100) = cnbad

so can’t find c, n0 that sastisfy definition
(i.e. f(n) = n2

bad 6≤ c · g(nbad) = cnbad)

alternative

nbad = max{c + 100, n0 + 1} > n0
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formal definition example (4)

f (n) ∈ O(g(n)) if and only if
there exists c > 0 and n0 > 0 such that
f (n) ≤ c · g(n) for all n > n0

consider: f (n) = 100 · n2 + n, g(n) = n2:
choose c = 200, n0 = 2
observe for n > 2: 100n2 + n ≤ 101n2

for n > 2 = n0: f(n) = 100n2 + n ≤ 101n2 ≤ c · g(n) = 200n2

15



big-oh proofs generally

if proving yes case:
look at inequality
choose a large enough c and n0 that it’s definitely true
don’t bother finding smallest c, n0 that work

if proving no case:
game: given c, n0 find counter example
general idea: choose n > n0 using a formula based on c
show that this n never satisfies the inequality
don’t bother showing it’s true for all n′ > n
don’t bother finding smallest n that works

16



aside: forall/exists

∀n > 0: for all n > 0

∃n < 0: there exists an n < 0

17



definition consequences

If f ∈ O(h) and g 6∈ O(h), which are true?
1. ∀m > 0, f (m) < g(m)

for all m, f is less than g

2. ∃m > 0, f (m) < g(m)
there exists an m, so f is less than g

3. ∃m0 > 0, ∀m > m0, f (m) < g(m)
there exists an m0, so for all m larger, f is less than g

4. 1 and 2

5. 2 and 3

6. 1 and 2 and 3
18
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f ∈ O(h), g 6∈ O(h) 6=⇒ ∀m.f (m) < g(m)

counterexample — f (n) = 5n; g(n) = n3; h(n) = n2

f ∈ O(h): 5n ≤ cn2 for all n > n0 with c = 6, n0 = 2
g 6∈ O(h): n3 ≤ cn2? use n ≈ cn0 as counterexample

m = 2: f (m) = 10 6< g(m) = 8

intuition: big-oh ignores behavior for small n
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n3 6∈ O(n2)

big-Oh definition requires:

n3 ≤ cn2 for all n > n0

choose any c > 1 and n0 > 1, then

n = cn0 is a counterexample
n3 = c3n3

0 = cn0(cn0)2 > cn2

contradicting the definition
(and for c < 1, use n = n0 + 1, etc.)

21



f ∈ O(h), g 6∈ O(h) =⇒ ∃m.f (m) < g(m)

intuition: should be true for ‘big enough’ m

assume definition of big-Oh:
f ∈ O(h): ∀n > n0 : f(n) ≤ ch(n) (for a n0, c > 0)
g 6∈ O(h): ∃n > n0 : g(n) > ch(n) (for any n0, c > 0)

assume f ’s n0, c

use the n that must exist for g (from definition)
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f ∈ O(h), g 6∈ O(h) =⇒ ?∃m0∀m > m0.f (m) < g(m)

intuitively, seems so g must grow faster than f — for big m:
f(m) < c1 · h(m)
g(m) < c2 · h(m)

but some corner case counterexamples:
f(n) = n

g(n) =
1 n odd

n2 n even
h(n) = n

true with additional restriction:
f , g monotonic (g(n) ≤ g(n + 1), etc.)

23



function hierarchy

1
4n

n + log(n) 3n2 + n

100n2 + n1.9
n2.5

5n3 + n2

O(n2)

O — upper bound (“≤”)

Ω(n2)

Ω — lower bound (“≥”)

O(n2) Ω(n2)

O and Ω overlap

Θ(n2)

Θ — tight bound (“=”) — O and Ω

o(n2)

g ∈ o(f) (“little-oh”)— strict upper bound
f(n) < c · g(n) (all c); (versus O(f): f(n) ≤ c · g(n))

ω(n2)

g ∈ ω(f) — strict lower bound
f(n) > c · g(n) (all c); (versus Ω(f): f(n) ≥ c · g(n))

24



function hierarchy

1
4n

n + log(n) 3n2 + n

100n2 + n1.9
n2.5

5n3 + n2

O(n2)

O — upper bound (“≤”)

Ω(n2)

Ω — lower bound (“≥”)

O(n2) Ω(n2)

O and Ω overlap

Θ(n2)

Θ — tight bound (“=”) — O and Ω

o(n2)

g ∈ o(f) (“little-oh”)— strict upper bound
f(n) < c · g(n) (all c); (versus O(f): f(n) ≤ c · g(n))

ω(n2)

g ∈ ω(f) — strict lower bound
f(n) > c · g(n) (all c); (versus Ω(f): f(n) ≥ c · g(n))

24



function hierarchy

1
4n

n + log(n) 3n2 + n

100n2 + n1.9
n2.5

5n3 + n2

O(n2)

O — upper bound (“≤”)

Ω(n2)

Ω — lower bound (“≥”)

O(n2) Ω(n2)

O and Ω overlap

Θ(n2)

Θ — tight bound (“=”) — O and Ω

o(n2)

g ∈ o(f) (“little-oh”)— strict upper bound
f(n) < c · g(n) (all c); (versus O(f): f(n) ≤ c · g(n))

ω(n2)

g ∈ ω(f) — strict lower bound
f(n) > c · g(n) (all c); (versus Ω(f): f(n) ≥ c · g(n))

24



function hierarchy

1
4n

n + log(n) 3n2 + n

100n2 + n1.9
n2.5

5n3 + n2

O(n2)

O — upper bound (“≤”)

Ω(n2)

Ω — lower bound (“≥”)

O(n2) Ω(n2)

O and Ω overlap

Θ(n2)

Θ — tight bound (“=”) — O and Ω

o(n2)

g ∈ o(f) (“little-oh”)— strict upper bound
f(n) < c · g(n) (all c); (versus O(f): f(n) ≤ c · g(n))

ω(n2)

g ∈ ω(f) — strict lower bound
f(n) > c · g(n) (all c); (versus Ω(f): f(n) ≥ c · g(n))

24



function hierarchy

1
4n

n + log(n) 3n2 + n

100n2 + n1.9
n2.5

5n3 + n2

O(n2)

O — upper bound (“≤”)

Ω(n2)

Ω — lower bound (“≥”)

O(n2) Ω(n2)

O and Ω overlap

Θ(n2)

Θ — tight bound (“=”) — O and Ω

o(n2)

g ∈ o(f) (“little-oh”)— strict upper bound
f(n) < c · g(n) (all c); (versus O(f): f(n) ≤ c · g(n))

ω(n2)

g ∈ ω(f) — strict lower bound
f(n) > c · g(n) (all c); (versus Ω(f): f(n) ≥ c · g(n))

24



function hierarchy

1
4n

n + log(n) 3n2 + n

100n2 + n1.9
n2.5

5n3 + n2

O(n2)

O — upper bound (“≤”)

Ω(n2)

Ω — lower bound (“≥”)

O(n2) Ω(n2)

O and Ω overlap

Θ(n2)

Θ — tight bound (“=”) — O and Ω

o(n2)

g ∈ o(f) (“little-oh”)— strict upper bound
f(n) < c · g(n) (all c); (versus O(f): f(n) ≤ c · g(n))

ω(n2)

g ∈ ω(f) — strict lower bound
f(n) > c · g(n) (all c); (versus Ω(f): f(n) ≥ c · g(n))

24



function hierarchy

1
4n

n + log(n) 3n2 + n

100n2 + n1.9
n2.5

5n3 + n2

O(n2)

O — upper bound (“≤”)

Ω(n2)

Ω — lower bound (“≥”)
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big-Oh variants
O(f) asymptotically less than or equal to f
o(f) asymptotically less than f
Ω(f) asymptotically greater than or equal to f
ω(f) asymptotically greater than f
Θ(f) asymptotically equal to f
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limit-based definition

lim sup n→∞
f(n)
g(n) = X

if only if…
X < ∞: f ∈ O(g)

X > 0: f ∈ Ω(g)

0 < X < ∞: f ∈ Θ(g)

X = 0: f ∈ o(g)

X = ∞ (and lim inf): f ∈ ω(g)
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lim sup?

lim sup f (n)
g(n)

— “limit superior”

equal to normal lim if it is defined

only care about upper bound

e.g. n2 in f (n) =
1 n odd

n2 n even

usually glossed over (including in Bloomfield’s/Floryan’s slides from
prior semesters)
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some big-Oh properties (1)

for O and Ω and Θ:

O(f + g) = O(max(f, g))

f ∈ O(g) and g ∈ O(h) =⇒ f ∈ O(h)
also holds for o (little-oh), ω

f ∈ O(f )
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some big-Oh properties (2)

f ∈ O(g) ↔ g ∈ Ω(f )

f ∈ Θ(g) ↔ g ∈ Θ(f )
does not hold for O, Ω, etc.

Θ is an equivalence relation
reflexive, transitive, etc.
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a note on =

informally, sometimes people write 5n2 = O(n2)

not very precise — O is a set of functions
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selected asymptotic relationships

for k > 0, l > 0, c > 1, ε > 0:

nk ∈ o(cnl) (polynomial always smaller than exponential)

nk ∈ o(nk log n) (adding log makes something bigger)

logk(n) ∈ Θ(logl(n)) (all log bases are the same)

nk + cnk−1 ∈ Θ(nk) (only polynomial degree matters)
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a note on logs

logk(n) = logl(n)
logl(k) = c · logl(n)

therefore
Θ(logk(n)) = Θ(logl(n))

…so doesn’t matter which base of log we mean

32



some names

Θ(1) — constant (some fixed maximum)
read kth element of array

Θ(log n) — logarithmic
binary search a sorted array

Θ(n) — linear
searching an unsorted array

Θ(n log n) — log-linear
sorting an array by comparing elements

Θ(n2) — quadratic
Θ(n3) — cubic
Θ(2n), Θ(cn) — exponential
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big-oh rules of thumb (1)

for (int i = 0; i < N; ++i)
foo();

runtime ∈ Θ(N × (runtime of foo))

time to increment i?
“constant factor”
ignored by Θ

for (int i = 0; i < N; ++i)
for (int j = 0; j < M; ++j)

bar();

runtime ∈ Θ(N × (M × runtime of bar))

nested loops — work inside out
find time of inner loop (“foo”)
multiply by iterations of outer loop

for (int i = 0; i < N; ++i)
for (int j = 0; j < i; ++j)

foo();

runtime ∈ Θ
(

N∑
i=0

i × runtime of foo
)

= Θ(N2 · runtime of foo)

at least N/2 iterations with
at least N/2 calls to foo
=⇒ N/2 · N/2 = N 2/4
also ≤ N · N = N 2 calls
=⇒ # calls to foo is Θ(N 2)
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big-oh rules of thumb (2)

foo();
bar();

runtime = runtime of foo + runtime of bar
∈ Θ(max{foo runtime,bar runtime})

if (quux()) {
foo();

} else {
bar();

}

runtime ≈ runtime of quux + max(runtime of foo, runtime of bar)
(max because we measure the worst-case)
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Θ(1): constant time

constant time (Θ(1) time) — runtime does not depend on input

accessing an array element

linked list insert/delete (at known end)

getting a vector’s size

…
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is that really constant time

is getting vector’s size really constant time?

vector stores its size, but, for, e.g. N = 210000, the size itself is huge

our usual assumption:
treat “sensible” integer arithmetic as constant time
(anything we’d keep in a long or smaller variable in practice?)

can do other analysis, but uncommon
e.g. “bit complexity” — number of single bit operations
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Θ(log n): logarithmic time

binary search of sorted array
search space cut in half each iteration — dlog2 Ne iterations

balanced tree search/insert
height of tree (somehow) gaurenteed to be Θ(log N)
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Θ(n): linear

constant # operations/element

printing a list

search in unsorted array

search in linked list

doubling the size of a vector

unbalanced binary search tree find/insert
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Θ(n log n): log-linear

fast comparison-based sorting
merge sort, heap sort, …

quicksort if pivot choices are good

inserting n elements into a balanced tree
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Θ(n2): quadratic

slow comparison-based sorting
insertion sort, bubble sort, selection sort, …

quicksort if pivot choices are bad

most doubly nested for loops that go up to n
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Θ(2nc), c ≥ 1: exponential

n-bit solution; try every 2n of the possiblities

crack a combination lock by trying every possiblity

finding the best move in an N × N Go game (with Japanese rules)

checking satisfiablity of Boolean expression*

the Traveling Salesman problem*

*known algorithms — maybe can do better?
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more?

Θ(n3) — find shortest paths between all pairs of n nodes on a
fully-connected graph

approx. order 2n1/3 — best known integer factorization algorithm
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