CS 2150 Exam 2, Fall 2017 Page 1 of 6 UVa userid:

CS 2150 Exam 2

Name

You MUST write your e-mail ID on EACH page and put your name on the top of this page, too.

If you are still writing when “pens down” is called, your exam will be ripped up and not graded — sorry to have to
be strict on this!

There are 6 pages to this exam. Once the exam starts, please make sure you have all the pages. Questions are worth
different amounts of points.

Answers for the short-answer questions should not exceed about 20 words; if your answer is too long (say, more
than 30 words), you will get a zero for that question!

This exam is CLOSED text book, closed-notes, closed-calculator, closed-cell phone, closed-computer, closed-neighbor,
etc. Questions are worth different amounts, so be sure to look over all the questions and plan your time accordingly.
Please sign the honor pledge below.

You step in the stream,
But the water has moved on.
This page is not here.

CS 2150 Exam 2, Fall 2017 Page 2 of 6 UVa userid:

Page 2: Some trees...some hashing

1. [3 points] What is the Big-Omega worst case runtime of inserting into an AVL-Tree? How much cost do the
tree rotations contribute to this runtime? Explain your answer.

2. [3 points] Fill in the following psuedo-code for the binary search tree remove method. Assume the BST allows
no duplicate entries.

BinarySearchTree :: remove(TreeNode thisNode, int valueToRemove):
if (thisNode.value != valueToRemove):
call remove on left subtree if valueToRemove is smaller
call remove on right subtree if valueToRemove is larger

else if(thisNode.value == valueToRemove):
if (thisNode has 0 children):
//?22

if (thisNode has 1 child):
/1?22

if (thisNode has 2 children):
/7?27

end remove ()

3. [3 points] Prove that inserting into a Binary Search Tree is {2(log(n) in the worst case (i.e., the insert MUST take
at least log(n) time worst-case). You may use the fact that for any BST with height s, the number of nodes in
the tree n is bounded by 2"*! — 1 (which we proved in class).

4. [3 points] List one advantage of having a high load factor in a hash table, and one advantage of having a low
load factor.

CS 2150 Exam 2, Fall 2017 Page 3 of 6 UVa userid:
Page 3: Hash Tables

5. [5 points] Suppose we have a hash table that uses the following hash function: H(z) = ASCII(x[0])%TS

In other words, the hash of a string is equal to the ASCII value of the first index character in the string, modded
by the table size. Insert the items below into the given table and use linear probing as your collision resolution
strategy. The ASCII value of the first character is given to you in parentheses next to each string.

Macbook (M=77), Strawberry (S=83), Donkey (D=68), melon (m=109), apricot (a=97)

INDEX VALUE

4

6. [5 points] Do the exact same, except this time use separate chaining as your collision resolution strategy.

INDEX VALUE

7. [6 points] Lastly, provide the worst-case big-theta runtimes for inserting n items into a hash table given each
collision resolution strategy. Give your answer as a function of s (the size of the table) and n (the number of
elements being inserted into the table). Briefly explain your answer.

Strategy Runtime Brief Explanation

Linear Probing

Separate Chaining

Double Hashing

CS 2150 Exam 2, Fall 2017 Page 4 of 6 UVa userid:
Page 4: IBCM and Assembly

On this page, you will design a calling convention for IBCM. There are several ways you can do this. Please be as
precise as you are able, and try to show us that you understand IBCM and calling conventions by describing your
answers as clearly and concisely as possible.

8. [1 points] For a free point, give us an overview of your approach in this space. You might want to do this
question after you've done the others below.

9. [3 points] Describe how the caller will pass parameters to a subroutine and how the callee will retrieve those
parameters.

10. [3 points] Describe where your method will allocate and store local variables.

11. [3 points] Describe how the callee will deliver return values back to the caller.

12. [3 points] Does your calling convention support recursion? Why or why not?

CS 2150 Exam 2, Fall 2017 Page 5 of 6 UVa userid:
Page 5: More IBCM and Assembly

13. [6 points] The following C++ function recursively computes the binomial coefficient (). Fill in the missing
instructions so that the assembly is equivalent to the C++. (Note: It is not necessary that you know what a
binomial coefficient is; just translate the C++ function to x86)

int binomialCoef(int n, int k) {
if (k == || n == k) return 1;
return binomialCoef(n—1, k) + binomialCoef(n—1, k—1);

}

binomialCoef: pop rsi
push rbx pop rdi
T 4
je done call binomialCoef
cmp rsi, rdi add rax, rbx
jmp end
777777777777777777 2 done:
dec rdi
push rdi .
5
push rsi end:
call binomialCoef
R

14. [3 points] What does the following x86 function do? (Either give the equivalent C++ code, or describe in a few
words what it does)

foo:

push rbx

mov rax, rdi
canp rdi, 1

je foo_end

mov rbx, rdi

dec rdi

call foo

imul rax, rbx
foo_end:

pop rbx

ret

CS 2150 Exam 2, Fall 2017 Page 6 of 6 UVa userid:

Page 6: This page intentionally left blank

You may use this space for scratch work, however nothing you write on this page will graded.

