CS 3100 Quiz Day 4 (Retakes), Fall 2022

CS 3100 Quiz Day 4 (Retakes)

This packet contains the quizzes for this quiz day. This cover sheet is here to provide instructions, and to cover the
questions until the quiz begins. do not remove this cover sheet until your proctor instructs you to do so.

You will have the entire class period to complete these quizzes. Each quiz is two pages (front and back of one sheet
of paper) worth of questions. Make sure to write your name and computing id at the top of each individual quiz.

When you are done, you will come to the front of the room and cut off the staple to this quiz booklet. Afterward,
you will discard this cover sheet and submit each quiz separately in a different pile. The proctors will be available
at the front of the room to clarify this if you have any questions.

This quiz is CLOSED text book, closed-notes, closed-calculator, closed-cell phone, closed-computer, closed-neighbor,
etc. Questions are worth different amounts, so be sure to look over all the questions and plan your time accordingly.
Please sign the honor pledge below.

In theory, there is no difference between theory and practice.
But, in practice, there is.

CS 3100 Quiz Day 4 (Retakes), Fall 2022

THIS COVER SHEET WILL NOT BE SUBMITTED. DO NOT PUT WORK YOU WANT GRADED ON THIS
PAGE

CS 3100 Quiz (Module 1 Attempt 3), Fall 2022 Page 1 of2 UVa userid:
Quiz - Module 1: Basic Graphs

Name

1. [8 points] Answer the following True/False questions regarding graphs and their basic algorithms.

Once BFS sets the distance to a node, this value will never be changed True False

While executing BFS, every reachable node will be added to, and removed True False
from, the queue exactly once

In undirected, connected graphs some nodes can be unreachable from others True False
When representing a graph using an adjacency matrix, ©(|E|) space is always True False
consumed

When representing a graph using an adjacency list, looking up the existence of True False

an edge could take ©(V') time

If DFS is implemented recursively, and nodes are NOT marked as visited, then = True False
an infinite loop could occur.

DFS uses less memory than BFS but is asymptotically slower True False

DFS-Sweep will always visit every node in the graph True False

2. [6 points] Consider the following implementation of the recursive portion of Depth-First Search. Fill in the
blanks in the provided implementation

def dfs_recurse(graph, curnode):
print (" Currently visiting node:

”

+ curNode .name)

curNode.color = 7 ___________ ” //White, Gray, or Black
alist = graph.get_adjlist (curnode) //get neighbors
for v in alist:

if v.color == 7 ___________ 7

dfs_recurse(_________ P)

curNode.color = 7 ____________

return

CS 3100 Quiz (Module 1 Attempt 3), Fall 2022 Page 2 of 2 UVa userid:

This question will ask you to step through the execution of Breadth-First Search. Consider the following Graph and
state of the nodes / queue:

Name Distance Path Queue *front of Queue
° Q G Vi 0 NULL V2
V2 1 V1
V4
V3
v4 1 Vi
V4 \\/_5/ V6 V5
V6

3. [3 points] For each node below, list its updated distance and path value after just one iteration of BFS is
complete.

Node Distance Path

v3

vb

v6

4. [2 points] Now, list the state of the Queue after this one iteration of BFS, in order from front to back.

5. [1 points] Now, list the shortest path to node v5 according to this execution of BFS. List the nodes in order in
the box here:

NOTHING BELOW THIS POINT WILL BE GRADED

CS 3100 Quiz (Module 2 Attempt 3), Fall 2022 Page 1 of2 UVa userid:
Quiz - Module 2: Advanced Graphs

Name

1. [8 points] Answer the following True/False questions regarding graphs and their algorithms.

Running Dijkstra’s Algorithm on an unweighted graph will still return the cor- True False
rect shortest paths

Dijkstra’s algorithm is slower than Breadth-First Search True False
In the Water Jugs problem from class, each edge represented filling up or True False

dumping out one jug (only these two options)

Prim’s Algorithm and Dijkstra’s Algorithm have the same runtime True False
Kruskal’s Algorithm is faster than Prim’s Algorithm True False
Some graphs have multiple Minimum Spanning Trees True False
Indirect Heaps can be used to update the priority of a node in a min-heap in True False

O(logn) time

When using path compression, a find-union’s find() method might be ©(n) time, True False
but the compression ensures that the next call to find() is ©(1)

2. [3 points] Consider the graph below. In the table, list the order in which the nodes become known if Prim’s Algorithm
is executed starting at V; (i.e., put a 1 in the box if that node become known first, a 2 in the box of the node that
becomes known second, etc.)

Order Nodes Added: Vi V2 V3 V4 V5 Ve

3. [3 points] Consider the same graph again. In the table below, list the order in which the edges are added if Kruskal’s
Algorithm is executed. Make sure to write edges as a tuple with the smaller index node listed first (e.g., (V1, V1))

Order Edges Added: Edge 1 Edge 2 Edge 3 Edge 4 Edge 5

CS 3100 Quiz (Module 2 Attempt 3), Fall 2022 Page 2 of 2 UVa userid:

4. [6 points] Complete the implementation of the find-union’s union method using union by rank below. Fill in the
code in each of the blanks to accomplish this.

Union (x,y):

Link (find (x), find(y))

Link(x,y):

if x.rank > y.rank:

___.parent = ___ //x or 'y
else
___.parent = ___ //x or 'y
if x.rank ___ y.rank: //<, >, or ==
___.rank = ___.rank + 1 //x or y

NOTHING BELOW THIS POINT WILL BE GRADED

CS 3100 Quiz (Module 3 Attempt 2), Fall 2022 Page 1 of2 UVa userid:

Quiz - Module 3: Divide and Conquer

Name

1. [8 points] Answer the following True/False questions.

When applying the Master Theorem, it is possible that none of the three cases True False
apply

Quickselect with Median of Medians finds the i'th order statistic in ©(n) time True False
Quickselect can be used to make Quicksort run in O(nlogn) and this approach True False

is faster in practice than Mergesort

Quickselect invokes Median of Medians, and Median of Medians also invokes True False
Quickselect
If our Closest Pair of Points algorithm compares every point in the strip to every True False

other point in the strip, then the final running time will be ©(n?)

When implementing Closest pair of points, we could compare each point in the True False
strip to the next 11 points and the algorithm would still work (and still be fast).

In Closest Pair of Points, it is possible to process the points in the strip BEFORE = True False
making the two recursive calls (if we want to)

The combining step of our Maximum SubArray problem from class ran in ©(n) True False
time

2. [6 points] Use the master theorem to establish the runtime of the following three recurrence relations. You
MUST list the case that you used (or NONE if impossible) as well as the big-theta runtime (or N/A if impossi-
ble). The master theorem is listed on the back of this quiz.

Recurrence Case Used © Runtime

T(n)=4xT(%)+nlogn

T(n)=4xT(%)+n?

CS 3100 Quiz (Module 3 Attempt 2), Fall 2022 Page 2 of 2 UVa userid:

3. [6 points] Consider the following problem, and the code that attempts to solve it. Fill in the missing blanks to
complete the Divide and Conquer solution. Problem Statement: You are given a list of numbers that is sorted
(non-decreasing) but has a long (1 or more) string of 8’s. Return the starting and ending indices of the 8's.
EXAMPLE: if given the array [1, 3,6, 8,8, 8, 8,8, 11, 14] you should return (3, 7).

/* This is pseudo—code x*/

function findStartAndEnd (int[] a, int start, int end):
int mid = (start + end) / 2
if (a[mid] < 8):

return findStartAndEnd(a, _______ , e)
else if(a[mid] > 8):

return findStartAndEnd(a, -_-_____ PR)
else if(a[mid] == 8):

start = findStart(a, _______ y e)

end = findEnd(a, _______ S e)

return (start, end)

/* Find the START index of the 8’s only x*/
function findStart(int[] a, int start, int end):
if (start == end)

return start //or end

int mid = (start + end) / 2
if (a[mid] < 8):

return findStart(_________ P)
else if (a[mid] >= 8)

return findStart(_________ oo)

function findEnd(int[] a, int start, int end):

/+ LEFT BLANK, BUT ANALOGOUS TO FINDSTART x/

NOTHING BELOW THIS POINT WILL BE GRADED
MASTER THEOREM: FOR YOUR REFERENCE

For a recurrence of form T'(n) = aT'(%) + f(n), let k = log, a
e Case 1: if f(n) = O(n*~¢) for some constant € > 0, then T'(n) = O(n*)

e Case 2: if f(n) = ©(n*), then T((n) = O(n*logn)

e Case 3: if f(n) = Q(n"¢) for some constant ¢ > 0, and if af(%) < cf(n) for some constant ¢ < 1 and all
sufficiently large n, then T'(n) = ©(f(n))

CS 3100 Quiz (Module 4 Attempt 2), Fall 2022 Page 1 of2 UVa userid:
Quiz - Module 4: Greedy Algorithms

Name

1. [8 points] Answer the following True/False questions.

Greedy Algorithms never backtrack (i.e., they never undo their decisions and True False
consider a different option instead).

Our greedy algorithm for making change could have progressed from the small- True False
est denomination (e.g., 1-cent coin) up to the highest and would still have

worked.

Our greedy algorithm for interval scheduling could have handled the last inter- True False

val first (using latest start time) and would have still worked.

Our greedy algorithm for fractional knapsack can add the items to the knapsack True False
in any order and it will still work.

For the knapsack problem, if the sum of the weights of the items is less than True False
the capacity of the knapsack, then it is always optimal to steal all the items

For the bridge crossing problem, once you start using the fastest walker to escort True False
the two slowest walkers across, you will never change strategy again.

The Minimum-Spanning Tree problem has Optimal Substructure True False
Dijkstra’s Algorithm is a greedy algorithm because it chooses the next known True False
node greedily and never looks back (the node with the shortest distance right

now).

2. [6 points] In this module, we studied many Greedy Algorithms. For each one below, list the runtime of the
brute-force algorithm AND the runtime of our greedy algorithm.

Problem Variables Brute-Force Notes Brute-Force Run- | Greedy Runtime
time

Making A (change to | Use up to A of each coin
Change make), C (number | denomination at most

of coin denomina-

tions)
Interval n (num. intervals) | Try every subset of inter-
Scheduling vals
Fractional n (num. items to | Try every unique order of
Knapsack steal), W (capacity | adding the items to the

of sack) knapsack

CS 3100 Quiz (Module 4 Attempt 2), Fall 2022 Page 2 of 2 UVa userid:

Consider the following problem: You are driving across the country, and your gas tank has a capacity of C liters.
You are also given a list of gas station locations G = {g1, g2, ..., g } along your route, your rate F of fuel-consumption
(in liters/kilometer), and the rate R at which you can fill up your tank (in liters/minute). Your goal is to minimize
the number of minutes you spend filling your tank with gas along the way.

3. [2 points] Which of the following best describes WHY this problem has optimal substructure (color in the box
next to your choice). Consider a solution of the form {o1, 02, ..., 0, } where each o; is the number of mins spent
refueling at each station (0 means you didn’t stop at that gas station).

[l The optimal solution definitely involves stopping at station 1 for o; minutes, but the rest of the steps
might be different if we had started our journey at station 1.

[The optimal solution can be cut in half, and each half may not be optimal itself, but together the whole
trip is optimal

L] The optimal solution has two parts: You drive to station 1 as fast as you can, and then drive the rest of
the way as quickly as possible

[The optimal solution has two parts: You drive to station and stop for 0; mins and then you drive the rest
of the way, minimizing your time refueling.

4. [4 points] Consider the two greedy choices below. Color in the box next to the choice that will minimize the
amount of time spent filling the gas tank.

[] Drive as far as you can (i.e., until you reach a gas station and cannot make it to the next one). Stop and
fill up all the way. Repeat.

[] Ateach gas station, stop and fill up the tank just enough to make it to the next gas station. Repeat.

NOTHING BELOW THIS POINT WILL BE GRADED

CS 3100 Quiz (Module 5 Attempt 2), Fall 2022 Page 1 of2 UVa userid:

Quiz - Module 5: Dynamic Programming

Name

1. [8 points] Answer the following True/False questions.

DP works best with overlapping subproblems (subproblems solved many times) True False
Our DP algorithm for RodCutting used ©(n) space, but ©(n?) time True False
In order to backtrack efficiently for Rod Cutting, we created a second array that True False

stored the size of the last cut at each step
Our DP solution to fibonacci can be improved to use ©(1) space True False

memoization is a term we use for the general approach of storing solutions to True False
subproblems, and looking them up later

Our DP knapsack algorithm had n = W array cells to compute, and each took True False
O(n) to compute, for a total runtime of O(n? « W)

Our making change algorithm filled out each cell of the DP array by checking True False
the values of at most two other cells.

for the Weighted Interval Scheduling problem, we were able to compute the P() True False
function for all intervals in ©(n logn) time

For this problem, step through the Discrete Knapsack dynamic programming solution from class. The recurrence for
thisis F'(k,w) = Max(F(k—1,w), V[k]+F(k—1,w—W{[k])). The input includes three items with values V' = [3, 5, 6]

and weights W = [1, 2, 3]. The capacity of the knapsack is C' = 4
w=0 |1 2 3 4
k=0 |0 0 0 0 0
1 0 3 3 3 3
2 0 3 5 8 8
3 0 3

2. [3 points] First, fill out the last three cells of the array above.

3. [3 points] Now;, color in the box for each statement below that is frue about the execution of the algorithm
above.

[] Forcellk = 3, w = 2 only one option was possible because item 3 is too heavy

D The overall solution includes the third item

D The k = 0, w = 4 cell is 0 because there is no room in the knapsack to fill

CS 3100 Quiz (Module 5 Attempt 2), Fall 2022 Page 2 of 2 UVa userid:

For these questions, you will solve the House Painting Problem (this is a real Google interview question). Assume we
are given a straight row of n houses (indexed from 1) and each can be painted one of three colors (Red, Green, or
Blue). We are also given three arrays (Cg[|, C¢[], and Cg[]). Each array stores the cost of painting the ith house that
respective color. For example, Cr[2] = 5 represents that it costs 5 dollars to paint the second house red. Your task:
Find the cheapest way to paint all » houses such that no two adjacent houses are painted the same color.

We are going to solve this problem using three separate (similar) recurrences. Let R(¢) be the minimum cost to
paint the first ¢ houses such that the house at index 7 is painted Red. G (i) and B(i) are analogous, with the house at
index ¢ being painted Green and Blue respectively.

4. [2 points] What are the three base cases? Fill in the blanks below

R)=__ Gl)=____ Bl)=___

5. [3 points] Now solve the general form of the recurrence in terms of smaller sub-problems (we will do R(%)
only, but the other two are similar). Fill in the blanks.

R(i) = Min(G(), B() +

6. [1 points] Which of the following subproblems stores the overall solution to the problem. Choose one by filling in
the box.

L1 Rm)
L] Maz(R(n),G(n), B(n))

L] Min(R(n),G(n), B(n))

NOTHING BELOW THIS POINT WILL BE GRADED

CS 3100 Quiz (Module 6 Attempt 2), Fall 2022 Page 1 of2 UVa userid:
Quiz - Module 6: Network Flow

Name

1. [8 points] Answer the following True/False questions.

Ford-Fulkerson has a runtime of O(|E| * f) True False

Ford-Fulkerson works by repeatedly finding augmenting paths, and pushing True False
one unit of flow through that path

After reducing Bi-Partite Matching to Network Flow, we can find the actual True False
matches by looking at edges with zero flow going through them

In order to reduce Bi-Partite Matching to Network Flow, we added 2 extranodes True False
and O(]V|) extra edges to the graph

A cut is at full capacity if all edges across it (both ways) are at full capacity True False
We proved the correctness of the Flow-Value Lemma by doing an induction in ~ True False
which we (at each step) moved one node across the cut and showed that the

net change in flow was always a positive number

Ford-Fulkerson does not work if a network has multiple sources, but the graph True False
can be reduced to an equivalent one with a single source

It is possible for a flow network to have a max-flow of zero True False

2. [6 points] The following code is an implementation of DFS used for Ford-Fulkerson that finds a path in a residual
graph. Complete the implementation below.

//Returns a path from source (index 0) to sink (index 1) in residual graph
global int[] visited
function DFS(int[][] Gf, int currentNode, int[] pathSoFar):

visited .append (currentNode)

if (o ___): //found the sink

return pathSoFar

/* Look at all outgoing nodes and try to traverse them x/
for i from 0 to Gf.length —1:

if i not in ___________ and Gf[________ | |] > 0:

aPath = DFS(Gf, _______ , pathSoFar.append(i))
if aPath !'= NULL:
return __________ //found one!

pathSoFar.remove (i)
return NULL

CS 3100 Quiz (Module 6 Attempt 2), Fall 2022 Page 2 of 2 UVa userid:

The graph G below shows a flow graph after Ford-Fulkerson has found two augmenting paths.

3. [1 points] Are there any augmenting paths in the residual flow graph G corresponding to the drawing of G
shown above? If so, list the vertices in a valid augmenting path in the box below. If there is not, write “none.”

Vertices in path:

4. [2 points] Look for or find a min-cut in the graph G shown above and list the vertices on the source side of this

cut in the box. (Include vertex s in your answer.)

5. [3 points] Which of the following are true statments about the proof of correctness we did in class for the
Max-Flow Min-Cut theorem? Fill in the box next to each statement that is true.

[1faflow network (with current flow f) has an augmenting path, then it is still possible that f is maximum
if no flow can be pushed through that augmenting path.

[] 1fa flow network has maximum flow f currently, then a cut that is at full capacity can be found by finding
all nodes reachable from the start node.

[] If there exists a cut that is at currently at maximum capacity, then there cannot be an augmenting path
because if there were, that path could be used to put the cut over capacity (which is a contradiction).

NOTHING BELOW THIS POINT WILL BE GRADED

