
COMPLEXITY THEORY
DISCRETE MATHEMATICS AND THEORY 2

MARK FLORYAN

GOALS!

1. Measuring Time and Space complexity of algorithms on Turing Machines (You

already know a lot of this!)

2. Introducing the most famous complexity classes (P, NP, NP-Hard, etc.)

3. Showing how a difficult a problem is through the use of mapping reductions

(you’ve already seen some of this in DSA2)!

PART 1: INTRODUCTION!

OVERVIEW OF THEORY OF COMPUTATION

Computing Machine /

Program / Algorithm
Input Output

Defining Computation

Computational Models

Circuits Finite

Automata

Pushdown

Automata

Turing

Machine

RAM

Model
< < < =

Computational Complexity

Decidability P, NP, NP-Hard P-Space, Co-NP, etc

PART 1: MEASURING TIME AND SPACE COMPLEXITY

TIME COMPLEXITY

Let 𝑀 be a deterministic Turing machine that halts on all inputs. The running time

or time complexity of 𝑀 is the function 𝑓: 𝒩 → 𝒩, where 𝑓(𝑛) is the maximum

number of steps that 𝑀 uses on any input of length 𝑛. If 𝑓(𝑛) is the running time

of 𝑀, we say that 𝑀 runs in time 𝑓(𝑛) and that 𝑀 is an 𝑓(𝑛) time Turing

machine. Customarily we use 𝑛 to represent the length of the input.

Short version: 𝑓(𝑛) is the worst

case runtime for machine 𝑀 as

a function of input size 𝑛.

You should already be familiar

with this definition / concept

REVIEW: TIME COMPLEXITY

𝑂(𝑓 𝑛), 𝑜(𝑓 𝑛) Asymptotic upper bounds

The following items, you should already know from previous courses.

Ω(𝑓 𝑛), 𝜔(𝑓 𝑛) Asymptotic lower bounds

Θ(𝑓 𝑛) Asymptotic tight bound

1, log 𝑛 , 𝑛, 𝑛𝑙𝑜𝑔 𝑛 , 𝑛2, 𝑛3 Some common complexity classes

log𝑎 𝑛 ∈ 𝑜 𝑛𝑏 ∈ 𝑜(𝑐𝑛)
Every log is bounded by any polynomial is bounded by any

exponential

QUICK NOTE ON NON-DETERMINISTIC TIME

What about non-deterministic Turing machines (NTMs)? How do we measure

running time of such a device?

With deterministic

computation, we simply look

at longest the one branch of

computation can possibly be.
For non-deterministic deciders

(does not loop forever), we

measure the length of the

longest branch of computation

QUICK NOTE ON NON-DETERMINISTIC TIME

Theorem: Every NTM that runs in time f(𝑛) has an equivalent DTM that runs in

time 𝑂(2𝑂(𝑓 𝑛)

COMPARING NTM AND DTM

Theorem: Every NTM that runs in time 𝑓(𝑛) has an equivalent DTM that runs in

time 𝑂(2𝑂(𝑓 𝑛)

Here, 𝑓(𝑛) is the

longest branch of

computation

let 𝑏 be the maximum number of branches this computation

can have

The computation tree has at most 𝑏𝑓(𝑛) leaves and each

branch to each node has length at most 𝑓(𝑛)

Construct a DTM with three tapes that simulates this NTM as we did in the Turing

Machine section earlier. This machines manually computes / simulates each

branch individually.

Thus, this machine simulates 𝑏𝑓(𝑛) branches at 𝑓 𝑛

time each for total time 𝑓 𝑛 𝑏𝑓(𝑛) ∈ 𝑂(2𝑂(𝑓(𝑛))

PART 1: COMPLEXITY CLASSES

PROBLEM TYPES

PROBLEM TYPES

Given a problem we want to solve, there are three important variations of that problem

Given G and s, return the

weight of the path P that

minimizes the sum of the

weights of the edges along P.

Traveling Salesperson Problem: Given a weighted graph G and start node s, find the

minimum weight path starting and ending at s that visits every node exactly once.

Given G, s, and integer k,

can you find a valid path

with total weight less than

or equal to k?

Given G, s, path P, and

integer k

Is path P valid and is it

weight less than or equal to

k?

Function Problem:

Return the actual solution

Decision Problem:

Convert problem to have Boolean output
Verification Problem:

Given a solution, verify if it works

WHY DO THESE MATTER?

Given G and s, return the

weight of the path P (list of

nodes to visit in order) that

minimizes the sum of the

weights of the edges along P.

Given G, s, and integer k,

can you find a valid path

with total weight less than or

equal to k?

Given G, s, path P, and

integer k

Is path P valid and is it

weight less than or equal to

k?

Function Problem:

Return the actual solution

Decision Problem:

Convert problem to have Boolean output
Verification Problem:

Given a solution, verify if it works

If you can solve the decision

problem you can also solve the

function problem Why?

Because if you can solve the

decision problem, you can

repeatedly invoke it with lower

values of k until the Yes

responses change to No

WHY DO THESE MATTER?

Given G and s, return the

weight of the path P (list of

nodes to visit in order) that

minimizes the sum of the

weights of the edges along P.

Given G, s, and integer k,

can you find a valid path

with total weight less than k?

Given G, s, path P, and

integer k

Is path P valid and is it

weight less than or equal to

k?

Function Problem:

Return the actual solution

Decision Problem:

Convert problem to have Boolean output
Verification Problem:

Given a solution, verify if it works

If you can solve the verification

problem, does it help you solve

the decision problem?

Answer: Yes! If verifier exists, we

can call the verifier over and

over again with possible paths

until we get a Yes response. We

will see soon though that this is

usually NOT efficient

WHY DO THESE MATTER?

Given G and s, return the

weight of the path P (list of

nodes to visit in order) that

minimizes the sum of the

weights of the edges along P.

Given G, s, and integer k,

can you find a valid path

with total weight less than k?

Given G, s, path P, and

integer k

Is path P valid and is it

weight less than or equal to

k?

Function Problem:

Return the actual solution

Decision Problem:

Convert problem to have Boolean output
Verification Problem:

Given a solution, verify if it works

We will focus on these two from

now on because Turing machines

return Yes/No answers.

A NOTE ON VERIFICATION

Given G, s, path P, and

integer k

Is path P valid and is it

weight less than or equal to

k?

Verification Problem:

Given a solution, verify if it works

Verification is technically more general than “given a

solution, verify it if works”.

Formal Definition: Given a string w and certificate c, use c

as proof to verify that w is in the language.

Given a language A, a verifier V is correct if and only if

𝑤 ∈ 𝐴 → ∃𝑐 | 𝑉(𝑤, 𝑐) accepts

COMPARING NTM AND DTM

Theorem: A problem P is verifiable in polynomial time by a DTM if and only if it

is solvable (decision problem) in polynomial time by an NTM

Here, polynomial time

means the runtime of

the machine is worst-

case Θ(𝑛𝑐) for 𝑐 ∈ 𝒩

COMPARING NTM AND DTM

Theorem: A problem P is verifiable in polynomial time by a DTM if and only if it

is solvable (decision problem) in polynomial time by an NTM

Direction 1: If a problem is verifiable by a DTM in polynomial time, then it is solvable in

polynomial time by an NTM.

Given: P is verifiable by

a DTM. Thus, the DTM

that verifies instances

of this problem exists

DTM Verifier

for P

Potential

solution s

Yes/No

s is valid

solution

NTM Solver for P
DTM Verifier

for P No

DTM Verifier

for P No

DTM Verifier

for P
Yes

DTM Verifier

for P No

Possible

solution 1

Possible

solution 2

Possible

solution 3

Possible

solution 4

𝜖
𝜖

𝜖

𝜖

COMPARING NTM AND DTM

Theorem: A problem P is verifiable in polynomial time by a DTM if and only if it

is solvable (decision problem) in polynomial time by an NTM

Direction 2 (Harder): If a problem is solvable by an NTM in polynomial time, then it is

verifiable in polynomial time by a DTM.

Given: P is solvable

by an NTM. Thus,

the NTM that exists

NTM Solver

for P
Input

Yes/No

decision

NTM Solver for P

N

N

N

N

N

Y

Purple path that

leads to Yes is a

certificate for P.

Why?

COMPARING NTM AND DTM

Theorem: A problem P is verifiable in polynomial time by a DTM if and only if it

is solvable (decision problem) in polynomial time by an NTM

Direction 2 (Harder): If a problem is solvable by an NTM in polynomial time, then it is

verifiable in polynomial time by a DTM.

NTM Solver for P

N

N

N

N

N

Y

Verifier for this language:

 Given w (input) and c (list of which branch to take at each step

 Simulate P

 At each step, check c to see which branch to take

 Accept iff P accepts

COMPARING NTM AND DTM

Theorem: A problem P is verifiable in polynomial time by a DTM if and only if it

is solvable (decision problem) in polynomial time by an NTM

This theorem is critical to

remember! It will be very

important in a moment.

COMPLEXITY CLASSES (FINALLY!)

THE CLASS P

The class P is the set of all

problems that can be solved

by a deterministic Turing

machine in time 𝑂(𝑛𝑐) such

that 𝑐 ∈ 𝒩

P

Important: P is a set of

problems (not solutions,

not algorithms)

Example problems in this set include:

Sorting a list of numbers

Inserting into a binary tree

Computing the average of a list of numbers

Printing “hello world”

Find() in a hash table

…and many more

THE CLASS NP

The class NP is the set of all

problems that can be solved by a

non-deterministic Turing machine

in time 𝑂(𝑛𝑐) such that 𝑐 ∈ 𝒩

NP

Remember: We also showed that any

NTM solver has an equivalent

exponential time DTM. So all problems

in NP are solvable in exponential time.

Example problems in this set include:

Everything in P (will prove shortly)

Traveling Salesperson Problem

Circuit Satisfiability

Vertex Cover

Independent Set

Subset Sum

…and many more

Equivalent Definition: By our

recently proved theorem, this also

means these problems can be

verified in polynomial time using

a deterministic Turing machine!

𝑃 ⊆ 𝑁𝑃

Is 𝑃 ⊂ 𝑁𝑃? This is

still unknown today!

Everything in P can be solved in

polynomial time by a DTM, so it

can definitely be verified as well

(just ignore the certificate and

solve the problem directly)

NP

P

Easy Problems

Hard Problems

Proof:

𝑃 ⊆ 𝑁𝑃

NP

P

Easy Problems

Hard Problems

It is true that we DO NOT know if

there are actually any unique problems

in NP (that are not also in P).

We are interested in finding the

hardest problem in NP (at the VERY

top of the bubble). Why? It is the

MOST likely to not be in P if 𝑃 ≠ 𝑁𝑃

NP-HARD

NP

P

Easy Problems

Hard Problems

NP-Hard problems are defined to be

all problems that are this hard OR

harder.

Suppose we have find the

hardest problem in NP

NP-HARD

NP

P

Easy Problems

Hard Problems

NP-Hard
Goes up to indefinite

difficulty.

Note that NP-Hard and NP

intersect here. Problems in this

intersection are the hardest

problems in NP

NP-COMPLETE

This section (purple) is the set

of NP-Complete problems. The

hardest problems in NP

NP

P

Easy Problems

Hard Problems

NP-Hard

Definition: A problem is NP-Complete if and

only if the problem:

1. Is in NP

2. Is NP-Hard

NP-COMPLETE

A different definition of NP-Hard

NP

P

Easy Problems

Hard Problems

NP-Hard

Definition: A problem A is NP-Hard if and

only if ∀𝐵 ∈ 𝑁𝑃, 𝐵 ≤𝑝 𝐴

𝐵 ≤𝑝 𝐴 means that problem A is

harder than problem B, shown through

a reduction, which we will see in a

moment.

MORE ON REDUCTIONS:
MAPPING REDUCTIONS

WHAT WE HAVE ALREADY SEEN

Reduction: A reduction exists between problems A and B if a solution to B can

be used to develop a solution for A.

Problem A

Solve problem B

Do easy work

Do more easy work

…

Problem B

Solve problem B
Reduces to

This kind of reduction involves the

decidability of Problems A and B. If B

is decidable then A is decidable!

MAPPING REDUCTION

One way (green

route) to solve A is

to use the decider

in 𝛩(𝐴𝑛) time

A mapping reduction uses a reduction function R() to map instances of one problem (A) to instances of another problem (B) such that for any input

string 𝑤, 𝐴 𝑤 == 𝐵(𝑅 𝑤)

Map instances of A to

instances of B in Θ(𝑅𝐴𝐵) time.

Problem A

Solution A

Decider for A that runs in

Θ(𝐴𝑛) time.

Problem B

Solution B

Decider for B that runs in

Θ(𝐵𝑛) time.

Map solutions of B to solutions

of A in Θ(𝑅𝑆𝐵𝐴) time.

Another way to solve A is to use the purple path. Takes:

Θ(𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴)

REDUCTIONS YOU’VE PROBABLY SEEN BEFORE!

Reduction:

Max-Flow ≤≥Θ(1) Min-Cut

Bi-Partite Matching ≤Θ(V + E) Max-Flow

FindMedian ≤Θ(1) Sorting

FindMin ≤Θ(1) Sorting

Details:

No conversion necessary. Value of maximum flow is equal to capacity of minimum cut

on the same, unaltered graph.

Conversion involved adding capacities to edges, adding source and sink node, adding

edges to / from source / sink node, etc.

No conversion necessary. Sort the list, then pull out the middle element in the array.

No conversion necessary. Sort the list, then pull the first element in the array. Note that

this one is a reduction to a HARDER problem. So won’t be used in practice.

RUNTIME COMPARISON

Map instances of A to

instances of B in Θ(𝑅𝐴𝐵) time.

Problem A

Solution A

Decider for A that runs in

Θ(𝐴𝑛) time.

Problem B

Solution B

Decider for B that runs in

Θ(𝐵𝑛) time.

Map solutions of B to solutions

of A in Θ(𝑅𝑆𝐵𝐴) time.

Which Algorithm is faster?

If 𝑅𝐴𝐵 + 𝑅𝑆𝐵𝐴 ∈ 𝑂(𝐵𝑛), then this represents a

valid reduction and 𝐴 ≤𝑅𝐴𝐵+𝑅𝑆𝐵𝐴
𝐵

If 𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴 ∈ 𝑂(𝐴𝑛), then this is the

best algorithm for A (or equally the best)

𝐴𝑛

𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴

RUNTIME COMPARISON

Which Algorithm is faster?

𝐴𝑛

𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴 ∈ Θ(𝐵𝑛)

Harder Problems

(fastest algorithm

has slower runtime)

Easy Problems

(fastest algorithm has

very fast runtime)

𝐴𝑛𝐵𝑛

Not surprisingly, if these two

algorithms have same overall

runtime, then either can be used (they

are equivalent).

RUNTIME COMPARISON

Harder Problems

(fastest algorithm

has slower runtime)

Easy Problems

(fastest algorithm has

very fast runtime)

𝐴𝑛

𝐵𝑛

If solving A through reduction is

SLOWER than directly solving A, this

means problem B is simply harder than

problem A (but the reduction is still

valid)

Which Algorithm is faster?

𝐴𝑛

𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴 ∈ Θ(𝐵𝑛)

RUNTIME COMPARISON

Harder Problems

(fastest algorithm

has slower runtime)

Easy Problems

(fastest algorithm has

very fast runtime)

𝐴𝑛

𝐵𝑛

If the reduction is FASTER than directly solving

A, What does this mean? It means the

reduction IS the best way to solve A (and this

picture doesn’t make sense)

Which Algorithm is faster?

𝐴𝑛

𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴 ∈ Θ(𝐵𝑛)

RUNTIME COMPARISON

Which Algorithm is faster?

𝐴𝑛

𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴 ∈ Θ(𝐵𝑛)

Harder Problems

(fastest algorithm

has slower runtime)

Easy Problems

(fastest algorithm has

very fast runtime)

𝐴𝑛 = 𝐵𝑛

…and the direct algorithm for A is

obsolete. The reduction through problem

B is the direct way to solve A

OLD 𝐴𝑛

RUNTIME COMPARISON

Suppose time goes on, and somebody find a

FASTER way to solve B in 𝐵𝑛
′ time, how will the

picture to the right change as a result?

Harder Problems

(fastest algorithm

has slower runtime)

Easy Problems

(fastest algorithm has

very fast runtime)

𝐴′𝑛 = 𝑅𝐴𝐵 + 𝐵′𝑛 + 𝑅𝑆𝐵𝐴

A now has a faster algorithm also! So

improving B’s algorithm improves A’s.

They are linked in this direction!

𝐴𝑛 = 𝐵𝑛

This is ONLY true if the reduction stays

valid, meaning the conversion is still

fast: 𝑅𝐴𝐵 + 𝑅𝑆𝐵𝐴 ∈ 𝑂(𝐵𝑛
′)

RUNTIME COMPARISON

Now suppose time goes on and someone finds a

VERY fast algorithm for A. What could

happen?

Harder Problems

(fastest algorithm

has slower runtime)

Easy Problems

(fastest algorithm has

very fast runtime)

𝐵′𝑛

𝐴′𝑛

Now, the reduction may still be valid, but we are

back to B being strictly harder than A

BIG PICTURE

So, via reduction

NP

P

Easy Problems

Hard Problems

NP-Hard

A valid reduction 𝐴 ≤𝑓(𝑛) 𝐵 establishes that B is at

least as hard as A

Some related facts!

If valid reductions exist in both directions: 𝐴 ≤ 𝐵 and 𝐵 ≤
𝐴, then the two problems are equally as hard

NP-Complete problems are the hardest in NP, so by definition

there is a valid reduction from anything in NP to them.

How fast does a reduction between NP-Complete problems need

to be? Just some polynomial. Why? We write this as 𝐴 ≤𝑝 𝐵

PROVING NP-COMPLETENESS

Usually we do the bolded ones

NP

P

Easy Problems

Hard Problems

NP-Hard

To prove a problem A is NP-Complete, show that:

1. 𝐴 ∈ 𝑁𝑃

How? Either:

 Solve in Polynomial time with an NTM

 Verify in Polynomial time with a DTM

2. Is NP-Hard

How? Either:

 Show that ∀𝐵∈𝑁𝑃𝐵 ≤𝑝 𝐴

 Pick known NP-Complete problem B and show 𝑩 ≤𝒑 𝑨

But for second step, we need a

known NP-Complete problem.

What was the first one?

COOK-LEVIN THEOREM

COOK-LEVIN THEOREM

Cook-Levin Theorem: The Satisfiability (SAT) problem is NP-Complete

Incredibly famous

theorem. Established

the first known NP-

Complete problem!
Developed

independently by

Stephen Cook (US) and

Leonid Levin (USSR) in

1971 & 1973

CIRCUIT SATISFIABILITY (CIRCUIT-SAT)

Given a circuit with

boolean inputs, AND, OR,

and NOT gates…is it

possible to assign values

to the input such that the

output is TRUE?

CIRCUIT SATISFIABILITY (CIRCUIT-SAT)

Solutions:

1110111110011001

1010111111011001

0110111110111001

0110111110011001

1110111111011001

1010111110011001

1010111110111001

0110111111011001

1110111110111001

CIRCUIT-SAT VS SAT

(v[0] || v[1]) && (!v[1] ||

!v[3]) && (v[2] || v[3]) &&

(!v[3] || !v[4]) && (v[4] ||

!v[5]) && (v[5] || !v[6]) &&

(v[5] || v[6]) && (v[6] ||

!v[15]) && (v[7] || !v[8]) &&

(!v[7] || !v[13]) && (v[8] ||

v[9]) && (v[8] || !v[9]) &&

(!v[9] || !v[10]) && (v[9] ||

v[11]) && (v[10] || v[11]) &&

(v[12] || v[13]) && (v[13] ||

!v[14]) && (v[14] || v[15])

These are two variations of the exact same problem. We will stick with the right side (SAT) from now on

PROOF OF THE COOK-LEVIN THEOREM

𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

To show that 𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶, we must show both that:

𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial

Time

𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

Show that ∃𝑥∈𝑁𝑃𝐶𝑥 ≤𝑝 𝑆𝐴𝑇

OR ∀𝒙∈𝑵𝑷𝒙 ≤𝒑 𝑺𝑨𝑻

Here, we must use the second

(bold) option because there

are not any NPC problems

that exist yet! Ugh!!

𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

Let’s do this one first:

𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial

Time

Given variables V, formula F, and potential values for each

variable V’:

1. Scan over formula F for first operator (Op) that should be

applied (deepest in parens and/or lowest precedence)

2. Find the two variables X and Y on each side of Op, this

gives X Op Y (example: V1 AND V7)

3. Apply operator Op to the values X and Y given by V’ or by

result of a previous operation and replace X Op Y with this

Boolean result.

4. Loop back to step 1 until only one Boolean remains. This

Boolean is true if and only if the solution V’ is verified.

Verifier:

Needs to be

polynomial runtime,

is it? Yes!

𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

To show that 𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶, we must show both that:

𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial

Time

𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

Show that ∃𝑥∈𝑁𝑃𝐶𝑥 ≤𝑝 𝑆𝐴𝑇

OR ∀𝒙∈𝑵𝑷𝒙 ≤𝒑 𝑺𝑨𝑻

This part is done!!

SAT IS NP-HARD

𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

Show that ∃𝑥∈𝑁𝑃𝐶𝑥 ≤𝑝 𝑆𝐴𝑇

OR ∀𝒙∈𝑵𝑷𝒙 ≤𝒑 𝑺𝑨𝑻

As we stated. before, we have to use

the second option because there

(when this proof was done) are no

NP-Complete problems yet!

SAT IS NP-HARD

𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∀𝒙∈𝑵𝑷𝒙 ≤𝒑 𝑺𝑨𝑻

NTM Decider

for x

Choose arbitrary 𝑥 ∈ 𝑁𝑃 Reduce problem x To an instance of SAT

𝑥1 ∧ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 …

How are we going to do this?

SAT IS NP-HARD

𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∀𝒙∈𝑵𝑷𝒙 ≤𝒑 𝑺𝑨𝑻

NTM Decider

for x

Choose arbitrary 𝑥 ∈ 𝑁𝑃 Reduce problem x To an instance of SAT

Tape moved right AND 1 written to first cell of tape AND …

IDEA: For any generic problem x in NP, it has a decider NTM. Convert that NTM into a Boolean

expression that describes the operation of the machine. Why is this a valid reduction?

VARIABLES WE NEED

Variable Meaning How many

Tijk True if tape cell i contains symbol j at step k of the

computation

O(p(n)2)

Hik True if the M’s read/write head is at tape cell i at step

k of the computation

O(p(n)2)

Qqk True if M is in state q at step k of the computation O(p(n))

𝑞 ∈ 𝑄
−𝑝 𝑛 ≤ 𝑖 ≤ 𝑝 𝑛
𝑗 ∈ Σ
0 ≤ 𝑘 ≤ 𝑝(𝑛)

Note that p(n) is the time the

original NTM takes and

𝑝 𝑛 ∈ Θ(𝑛𝑐)

Some constraints:

CREATE A CONJUNCTION ‘B’ OF…

Expression Conditions Interpretation How many

Tij0 Tape cell i initially

contains symbol J

Initial tape state; blank symbols

above n

O(p(n))

Qs0 Initial state of the NTM 1

H00 Initial position of the read/write head 1

Tijk → Tij’k j != j’ One symbol per tape cell O(p(n)2)

Tijk = Tij(k+1)  Hjk Tape remains unchanged unless

written

O(p(n)2)

Qqk → Qq’k q  q’ Only one state at a time O(p(n))

Hjk → Hj’k i  i’ Only one head position at a time O(p(n)2)

(Hik  Qqk  Tik)

→ (H(i+d)(k+1) 

Qq’(k+1)  Ti’(k+1))

(q, , q’, ’, d) 



Possible transitions at computation

step k when head position is at

position I

O(p(n)2)

fF Qfp(n)

Must finish in an accepting state 1

IS THE REDUCTION VALID?

Yes!

The number of sub-expressions is:

2p(n) + 4p(n)2 + 3 = O(p(n)2)

and each is computed in less than that.

NTM for x accepts iff and only if SAT equation can be satisfied The time and space complexity of the reduction is polynomial

If there is an accepting

computation for the NTM on input

I, then B is satisfiable by assigning

Tijk, Hjk, and Qjk their intended

interpretations.

𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

To show that 𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶, we must show both that:

𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial

Time

𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∀𝒙∈𝑵𝑷𝒙 ≤𝒑 𝑺𝑨𝑻

Thus, it is proven!!

OTHER NP-COMPLETE PROBLEMS (REDUCTIONS)

3-SAT

3-SAT

𝑉 = 𝑣1 ∨ 𝑣2 ∨ 𝑣3 ∧ 𝑣4 ∨ 𝑣1 ∨ 𝑣2 ∧ 𝑣4 ∨ 𝑣3 ∨ 𝑣1 ∧ ⋯

3-SAT = Can a provided Boolean expression in 3-Conjunctive-Normal Form (3-CNF) be satisfied?

Is it easier to decide 3-SAT because the format is simpler?

Each Clause contains a

disjunction (OR) of exactly 3

literals (or negated literals)

The expression must be a

conjunction (AND) of

multiple clauses

SHOWING THAT 3𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

To show that 3𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶, we must show both that:

3𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial

Time

3𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∃𝒙∈𝑵𝑷𝑪𝒙 ≤𝒑 𝟑𝑺𝑨𝑻

This one, as usual,

is not difficult.

This time we can reduce from a

concrete, known, NPC problem.

We only have SAT so far, so

that is what we will choose!

SHOWING THAT 3𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

3𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial

Time

This is trivial. The verifier we

developed for SAT will also work

for 3SAT.

SHOWING THAT 3𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

3𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∃𝒙∈𝑵𝑷𝑪𝒙 ≤𝒑 𝟑𝑺𝑨𝑻

𝑺𝑨𝑻 ≤𝒑 𝟑𝑺𝑨𝑻

Given a generic SAT input, can we convert it into an equivalent formula in 3SAT?

Need to show 3SAT is at

least as hard as SAT.

How? Show a reduction.

SAT input x:

e.g.,

 = ((x1 → x2)  ((x1  x3)

 x4))  x2

Equivalent 3SAT formula:

e.g.,

’i = (y1y2x2)  (y1y2x2)

 (y1y2x2)  (y1y2x2)…

CONVERTING SAT TO 3-SAT, STEP 1

Input:

 = ((x1 → x2)  ((x1  x3)  x4))  x2

Step 1: Parse the

expression into an

expression tree

CONVERTING SAT TO 3-SAT, STEP 2

Step 2: Introduce a variable 𝑦𝑖 for each internal

node. This variable will represent whether or not that

subtree expression evaluated to True or False

We can then re-write our expression:

’ = y1  (y1  (y2  x2))

  (y2  (y3  y4))

  (y3  (x1 → x2))

  (y4  y5)

  (y5  (y6  x4))

  (y6  (x1  x3))

CONVERTING SAT TO 3-SAT, STEP 3

• ’ = y1  (y1  (y2  x2)

  (y2  (y3  y4))

  (y3  (x1 → x2))

  (y4  y5)

  (y5  (y6  x4))

  (y6  (x1  x3))

Step 3:

Build a truth table for each clause ’i:

y1 y2
X2 (y1  (y2 

x2))

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 1

CONVERTING SAT TO 3-SAT, STEP 4 / 5

’i =

 (y1y2x2) 

 (y1y2x2) 

 (y1y2x2) 

 (y1y2x2)

Step 4: For each clause, construct a DNF

(disjunctive normal form) for when it is False

(based on truth table)

y1 y2 x2 (y1  (y2 

x2))

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 1

Step 5: Take this formula and negate it to get all

the instances where the clause is true in CNF

(conjunctive normal form).

’i = (y1y2x2)  (y1y2x2)  (y1y2x2) 

(y1y2x2)

Negate formula

’i = (y1y2x2)  (y1y2x2)  (y1y2x2)

 (y1y2x2)

CONVERTING SAT TO 3-SAT, STEP 6

’i = (y1  y2  x2)  (y1  y2  x2)  (y1  y2  x2)  (y1  y2  x2)

Step 6: Almost done. This works but some clauses may have only 1 or 2 literals (3 are required for every single

clause). Add dummy variables to force each clause to have three literals.

Case 3: Clause has only 1 literal

(𝑣𝑖)

𝑣𝑖 ∨ 𝑝 ∨ 𝑞 ∧ 𝑣𝑖 ∨ ¬𝑝 ∨ 𝑞

∨ 𝑣𝑖 ∨ 𝑝 ∨ ¬𝑞 ∧ (𝑣𝑖 ∨ ¬𝑝 ∨ ¬𝑞)

Becomes:

Introduce dummy

variables p and q

Case 2: Clause has only 2 literals

(𝑣𝑖 ∨ 𝑣𝑗)

𝑣𝑖 ∨ 𝑣𝑗 ∨ 𝑝 ∧ 𝑣𝑖 ∨ 𝑣𝑗 ∨ ¬𝑝

Becomes:

Introduce dummy

variable p

Case 1: Clause has 3 literals

(𝑣𝑖 ∨ 𝑣𝑗 ∨ 𝑣𝑘)

𝑣𝑖 ∨ 𝑣𝑗 ∨ 𝑣𝑘

Do nothing,

already fine

SHOWING THAT 3𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

To show that 3𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶, we must show both that:

3𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial

Time

3𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∃𝒙∈𝑵𝑷𝑪𝒙 ≤𝒑 𝟑𝑺𝑨𝑻

We are done!!

CLIQUES

CLIQUE

A Clique in a graph G is a set of nodes such that each one is connected to

each other in the set

In other words, it is a maximal

sub-graph of G

Problem: Find the maximum size

clique in a graph G

CLIQUE

A Clique in a graph G is a set of nodes such that each one is connected to

each other in the set

Can we frame this as a Decision Problem?

Given a graph G and an integer k, return

Yes iff G has a clique of size k or larger.

SHOWING THAT CLIQUE ∈ 𝑁𝑃𝐶

To show that 𝐶𝑙𝑖𝑞𝑢𝑒 ∈ 𝑁𝑃𝐶, we must show both that:

C𝑙𝑖𝑞𝑢𝑒 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial

Time

C𝑙𝑖𝑞𝑢𝑒 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∃𝒙∈𝑵𝑷𝑪𝒙 ≤𝒑 𝑪𝒍𝒊𝒒𝒖𝒆

As usual, this one

is pretty simple For this one, we can

choose SAT or 3-SAT

SHOWING THAT CLIQUE ∈ 𝑁𝑃𝐶

C𝑙𝑖𝑞𝑢𝑒 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial

Time

Verifier:

Given G, k, and a subset 𝑉′ ⊆ 𝑉 of nodes

1. Verify that number of nodes in V’ is k or larger

2. For each pair of nodes (p,q) in V’:

1. check that edge p,q exists in G

2. If not, return NO

3. Return YES

SHOWING THAT CLIQUE ∈ 𝑁𝑃𝐶

C𝑙𝑖𝑞𝑢𝑒 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

3-SAT≤𝒑 𝑪𝒍𝒊𝒒𝒖𝒆 We choose 3-SAT

Goal: Given a generic 3-SAT input, can we convert it into graph and integer k such that

the 3-SAT formula is satisfiable IFF the graph has a click of at least size k?

Graph G and integer kInput: 3SAT formula:

e.g.,

’i = (y1y2x2)  (y1y2x2)

 (y1y2x2)  (y1y2x2)…

Converting a Boolean formula into a graph is strange, right? Let’s see how it works!

3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, INTUITION

TIP: When doing a

reduction, think about the

“spirit” of how the problems

relate to each other

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

With a 3-Sat formula, we have:

1. A bunch of “things” (variables)

2. Some can be assigned TRUE without issue

(they are “connected”)

3. Each clause must have a TRUE item that

is connected (valid) with the other items

in the other clauses

3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, STEP 1

Step 1: Create a graph G

with nodes where each

variable in 𝜃 represents a

node in G

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, STEP 1

Step 1: Create a graph G

with nodes where each

variable in 𝜃 represents a

node in G

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

Goal: The nodes we

choose in our clique will

be the same variable we

choose to set to TRUE in 𝜃

3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, STEP 2

Step 2: Connect any two

nodes that are in different

clauses AND can be set to

true at the same time

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

X

We connect these

two because they do

not conflict

We cannot connect

these two because they

contradict one another

3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, STEP 2

Step 2: Connect any two

nodes that are in different

clauses AND can be set to

true at the same time

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, STEP 3

Step 3: Set k equal to the

number of clauses in 𝜃

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

k=3

3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, PROOF

Claim:

𝜃 is satisfiable IFF G contains a

clique of size 3

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

Intuition:

One clique of size 3 is shown. The

nodes in the clique represent three

variables, one per clause, that can be

set to TRUE without issue.

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

k=3

3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, PROOF

Direction 1:

𝜃 is satisfiable → G contains

a clique of size k

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

k=3

Proof:

𝜃 is satisfiable

This means at least one variable is true in each clause

Take one true variable from each clause (k total)

Find their nodes in G

These nodes MUST be a clique of size k

 Each of the k nodes is connected to each other:

 They are in a different clause

 They can both be assigned true

Q.E.D.

3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, PROOF

Direction 2:

G contains a clique of size k

→ 𝜃 is satisfiable

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

k=3

Proof:

G contains a clique of size k

Select the k nodes

Find their respective variables in 𝜃

Each of these variables must be in a different clause

 By how G was constructed

Each variable can be set to TRUE without issue

 By definition of how edges were added to G

Thus, these variables must satisfy 𝜃

VERTEX COVER

VERTEX COVER

A Vertex Cover (VC) on a graph G = (V,E) is a subset of vertices S  V such that

every edge in the graph is connected to at least one vertex in S

The purple nodes

represent a vertex

cover of size 3 on

this graph. Notice

that every edge

touches one of these

nodes

Decision Problem: Does a given graph G have a vertex cover of size k or smaller?

1 2

4 5

76

3

SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

To show that 𝑉𝐶 ∈ 𝑁𝑃𝐶, we must show both that:

V𝐶 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial

Time

𝑉𝐶 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

𝑪𝒍𝒊𝒒𝒖𝒆 ≤𝒑 𝑽𝑪

As usual, this one

is pretty simple
Let’s use Clique

this time

SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

V𝐶 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial

Time

Given graph 𝑮 = (𝑽, 𝑬), integer k and subset 𝑽′ ⊆ 𝑽:

Verify that 𝑉′ ≤ 𝑘, if not reject

For each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸

 Check that 𝑢 ∈ 𝑉′ ∨ 𝑣 ∈ 𝑉′, if not reject

else accept

SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

𝑉𝐶 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

𝑪𝒍𝒊𝒒𝒖𝒆 ≤𝒑 𝑽𝑪

Given a graph G, integer k,

and looking for a clique of

size k

graph G’, integer k’, and

looking for a vertex cover of

size k’

1 2

3 4

5 6

G

k=4

G’

k=?

?

SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

Given a graph G, integer k,

and looking for a clique of

size k

graph G’, integer k’, and

looking for a vertex cover of

size k’

1 2

3 4

5 6

G

k=4

Simply flip the edges that exist in G and set k to 𝑉 − 𝑘

1 2

3 4

5 6

G

k=2

SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

1 2

3 4

5 6

G

k=4

Claim: G has a clique of size k IFF G’ has a VC of size 𝑉 − 𝑘

1 2

3 4

5 6

G

k=2

…and if the clique in G is nodes

𝑉′ ⊆ 𝑉, then the cover in G’ is

exactly the nodes 𝑉 − 𝑉′

SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

1 2

3 4

5 6

G

k=4

Claim: G has a clique of size k IFF G’ has a VC of size 𝑉 − 𝑘

1 2

3 4

5 6

G

k=2

Proof Direction 1: Suppose G has a clique 𝑉′ ⊆ 𝑉 of size k

Consider nodes 𝑉 − 𝑉′ in G’

In G, every edge between nodes in V’ existed (clique), so none of these edges appear in G’

Thus every edge in G’ touches a node that was not in the clique, which is the exact set 𝑉 −

𝑉′

Q.E.D.

SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

1 2

3 4

5 6

G

k=4

Claim: G has a clique of size k IFF G’ has a VC of size 𝑉 − 𝑘

1 2

3 4

5 6

G

k=2

Proof Direction 2: Suppose G’ has a cover 𝑉′ ⊆ 𝑉 of size 𝑉 − 𝑘

Consider the k nodes 𝑉′′ = 𝑉 − 𝑉′ in G

In G’, no edge between nodes in V’’ exists, otherwise V’ would not be a vertex cover

Thus, in G every edge between nodes in V’’ exists. This is definition of a clique

Q.E.D.

MORE ON REDUCTIONS

MORE REDUCTIONS!

The problems were known to be “hard”, but how

“hard” was not really quantified until then

In 1972, Richard

Karp showed a

number of problems

were NP-complete

DOES P=NP

To this day, we still do not know if P and

NP are distinctly separate. But, we have a

lot of known NP-Complete problems

NP

P

Easy Problems

Hard Problems

NP-Hard

What would happen if someone found an

algorithm to solve one of these famous NP-

Complete problems that ran in polynomial

time?

NP

P

NP-Hard

If someone finds a

polynomial time

algorithm to ANY np-

complete problem, then

P=NP

P-Hard

NP-Hard

Suddenly, through various reductions there is a

fast (polynomial) algorithm for every NP

problem!

ANOTHER REDUCTION:
3-COLORING

3-COLORING

Problem Statement:

Given graph G, and three colors c1, c2, c3 (not really

given as input), can we color the graph with these

colors such that no adjacent nodes have the same

color.

Turns out that 3-Coloring is NP-Complete, and

problems like this should start “feeling” NP-Complete

to you.

SHOWING THAT 3𝐶 ∈ 𝑁𝑃𝐶

To show that 3C ∈ 𝑁𝑃𝐶, we must show both that:

3𝐶 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial

Time

3𝐶 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

𝟑𝑺𝑨𝑻 ≤𝒑 𝑽𝑪

As usual, this one

is pretty simple
Let’s use 3-SAT

this time

SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

3𝐶 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial

Time

Given graph 𝑮 = (𝑽, 𝑬), and color assignments C for each node in V:

Verify that only 3 unique colors exist in C, if not reject

Verify that each node was assigned exactly one color in C, if not reject

For each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸

 Check that 𝐶 𝑢 ≠ 𝐶[𝑣], if not reject

else accept

3𝑆𝐴𝑇 ≤𝑝 3𝐶

3𝐶 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

𝟑𝑺𝑨𝑻 ≤𝒑 𝑽𝑪

Given a boolean formula in 3-CNF 𝜃

that we want to test satisfiability on

graph G that is 3-Colorable if and

only if 𝜃 is satisfiable

G

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦)

3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the fact that variables can only be set to True and False.

- Model the variables and the fact that each variable XOR its

negation can be True.

- Model the fact that at least one variable per clause must be

chosen.

3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the fact that variables can only be set to True and False.

- Model the variables and the fact that each variable XOR its

negation can be True.

- Model the fact that at least one variable per clause must be

chosen.

T F

N

Whatever color these top two nodes are assigned will

represent True / False for the remainder of the coloring.

Notice that if we connect a variable (node) to this

Neutral node, then that variable MUST take on the color

assigned to True or False

3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the variables and the fact that each variable XOR its

negation can be True.

- Model the fact that at least one variable per clause must be

chosen.T F

N

𝑢 ¬𝑢

This variable is connect to the Neutral, so it MUST take the True color or the false color.

This variable cannot take the Neutral color so it

must be the opposite of whatever u took. One is

true, the other is false.

3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the variables and the fact that each variable XOR its

negation can be True.

- Model the fact that at least one variable per clause must be

chosen.

T F

N

𝑢 ¬𝑢

𝑣 ¬𝑣

𝑤 ¬𝑤

𝑥 ¬𝑥

𝑦 ¬𝑦

So far, so good. By assigning every node one

of three colors, we can effectively choose which

variables to set to True / False!

3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the fact that at least one variable per clause must be chosen.

out

Claim:

Three fully-connected nodes can act as an OR gate. The

output node can be colored with the True color IFF at least

one of the input nodes is colored with the true color.

In

1

In

2

True / True

F

N

T

T

T

True / False

F

N

T

T

F

False / False

T

N

F

F

F

3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the fact that at least one variable per clause must be chosen.

Quick Aside:

Notice that in some cases, we can color the output to the neutral color. We

will handle this issue in a moment.

But, it is still the case that we CAN color the output True if and only if one of

the input nodes is colored True.

True / False

F

T

N

T

F

3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the fact that at least one variable per clause must be chosen.

T

N

F

Corollary:

We can combine two of these widgets to produce an OR

gate across three variables. The output is colorable as TRUE

if and only if one of the three inputs is colored TRUE

F

F

Example 1: False / False / True

N

F

T

T

In

1

In

2

out

In

3

T

N

F

F

F

Example 2: False / False / False

N

T

F

F

3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦)

F

N

T

Clause 1

F

N

T

F

N

T

Clause 2

F

N

T

T F

N

𝑢 ¬𝑢

𝑣 ¬𝑣

𝑤 ¬𝑤

𝑥 ¬𝑥

𝑦 ¬𝑦

Notice that the outputs of the gates are

connected to the False and Neutral terminals.

This is because we NEED the output of each

clause to be colored True!

(VERY INFORMAL) PROOF OF REDUCTION

114

• Sat() → G is 3-Colorable

• Assume  is satisfiable

• 3 colors (true, false, base)

• Color B,T,F with these colors

• Color variable nodes with T and F

depending on their satisfying values for 

• Or gates always colorable so that they

represent correct OR (output is true iff one

or more inputs true)

• Thus G is 3-Colorable

• G is 3-Colorable → Sat()

• Assume G is 3-Colorable

• Color the graph

• Let the colors of the B,T,F nodes represent

base, true, and false respectively.

• Re-arrange OR gate colors slightly if

necessary so output is always T or F

• Let variable assignments be the color they

were given

• These assignments satisfy 

CONCLUSIONS / OTHER COMPLEXITY CLASSES

A COUPLE COMPLEXITY CLASSES WE WON’T SEE:

• EXPTIME

• Deterministic exponential time

• NEXPTIME

• Non-Deterministic exponential time

• PSPACE

• Deterministic Polynomial Space

• NPSPACE

• Non-Deterministic Polynomial Space

• EXPSPACE

• Deterministic Exponential Space

• NEXPSPACE

• Non-Deterministic Exponential Space

PSPACE = NPSPACE and EXPSPACE = NEXPSPACE

(WOAH! That’s pretty cool!)

COMPLEXITY CLASS DIAGRAM

CONCLUSIONS!

1. Problem types (function, decision, verification), runtimes of DTMs and NTMs,

relationships between DTM and NTM runtimes for types of problems.

2. The basic complexity classes (P, NP, NP-Hard, NPC) and how they relate to

one another.

3. What a reduction is and how it is used to compare the difficulty of two

different problems.

In this module, we learned:

4. How to prove that a problem is NP-Complete.

IF WE HAVE TIME

https://www.youtube.com/watch?v=oS8m9fSk-Wk

https://www.youtube.com/watch?v=oS8m9fSk-Wk
https://www.youtube.com/watch?v=oS8m9fSk-Wk
https://www.youtube.com/watch?v=oS8m9fSk-Wk

	Slide 1: Complexity Theory
	Slide 2: Goals!
	Slide 3: Part 1: Introduction!
	Slide 4: Overview of Theory of Computation
	Slide 5: Part 1: Measuring Time and Space Complexity
	Slide 6: Time Complexity
	Slide 7: Review: Time Complexity
	Slide 8: Quick note on Non-Deterministic Time
	Slide 9: Quick note on Non-Deterministic Time
	Slide 10: Comparing NTM and DTM
	Slide 11: Part 1: Complexity Classes
	Slide 12: Problem Types
	Slide 13: Problem types
	Slide 14: Why Do These Matter?
	Slide 15: Why Do These Matter?
	Slide 16: Why Do These Matter?
	Slide 17: A note on Verification
	Slide 18: Comparing NTM and DTM
	Slide 19: Comparing NTM and DTM
	Slide 20: Comparing NTM and DTM
	Slide 21: Comparing NTM and DTM
	Slide 22: Comparing NTM and DTM
	Slide 23: Complexity Classes (Finally!)
	Slide 24: The class P
	Slide 25: The class NP
	Slide 26: cap P subset or equals cap N cap P
	Slide 27: cap P subset or equals cap N cap P
	Slide 28: NP-Hard
	Slide 29: NP-Hard
	Slide 30: NP-Complete
	Slide 31: NP-Complete
	Slide 32: More on Reductions: Mapping Reductions
	Slide 33: What we have already seen
	Slide 34: Mapping Reduction
	Slide 35: Reductions You’ve Probably seen before!
	Slide 36: Runtime Comparison
	Slide 37: Runtime Comparison
	Slide 38: Runtime Comparison
	Slide 39: Runtime Comparison
	Slide 40: Runtime Comparison
	Slide 41: Runtime Comparison
	Slide 42: Runtime Comparison
	Slide 43: Big Picture
	Slide 44: Proving NP-Completeness
	Slide 45: Cook-Levin Theorem
	Slide 46: Cook-Levin Theorem
	Slide 47: Circuit Satisfiability (Circuit-SAT)
	Slide 48: Circuit Satisfiability (Circuit-SAT)
	Slide 49: Circuit-Sat vs SAT
	Slide 50: Proof of the Cook-Levin Theorem
	Slide 51: cap S cap A. cap T element of cap N cap P cap C
	Slide 52: cap S cap A. cap T element of cap N cap P cap C
	Slide 53: cap S cap A. cap T element of cap N cap P cap C
	Slide 54: Sat is NP-Hard
	Slide 55: Sat is NP-Hard
	Slide 56: Sat is NP-Hard
	Slide 57: Variables We Need
	Slide 58: Create a conjunction ‘B’ of…
	Slide 59: Is the reduction Valid?
	Slide 60: cap S cap A. cap T element of cap N cap P cap C
	Slide 61: Other NP-Complete Problems (Reductions)
	Slide 62: 3-SAT
	Slide 63: 3-SAT
	Slide 64: Showing that 3 cap S cap A. cap T element of cap N cap P cap C
	Slide 65: Showing that 3 cap S cap A. cap T element of cap N cap P cap C
	Slide 66: Showing that 3 cap S cap A. cap T element of cap N cap P cap C
	Slide 67: Converting SAT to 3-SAT, step 1
	Slide 68: Converting SAT to 3-SAT, step 2
	Slide 69: Converting SAT to 3-SAT, step 3
	Slide 70: Converting SAT to 3-SAT, step 4 / 5
	Slide 71: Converting SAT to 3-SAT, step 6
	Slide 72: Showing that 3 cap S cap A. cap T element of cap N cap P cap C
	Slide 73: Cliques
	Slide 74: Clique
	Slide 75: Clique
	Slide 76: Showing that Clique element of cap N cap P cap C
	Slide 77: Showing that Clique element of cap N cap P cap C
	Slide 78: Showing that Clique element of cap N cap P cap C
	Slide 79: 3 cap S cap A. cap T less than or equal to sub p , cap C l i. q u e , Intuition
	Slide 80: 3 cap S cap A. cap T less than or equal to sub p , cap C l i. q u e , Step 1
	Slide 81: 3 cap S cap A. cap T less than or equal to sub p , cap C l i. q u e , Step 1
	Slide 82: 3 cap S cap A. cap T less than or equal to sub p , cap C l i. q u e , Step 2
	Slide 83: 3 cap S cap A. cap T less than or equal to sub p , cap C l i. q u e , Step 2
	Slide 84: 3 cap S cap A. cap T less than or equal to sub p , cap C l i. q u e , Step 3
	Slide 85: 3 cap S cap A. cap T less than or equal to sub p , cap C l i. q u e , Proof
	Slide 86: 3 cap S cap A. cap T less than or equal to sub p , cap C l i. q u e , Proof
	Slide 87: 3 cap S cap A. cap T less than or equal to sub p , cap C l i. q u e , Proof
	Slide 88: Vertex Cover
	Slide 89: Vertex Cover
	Slide 90: Showing that cap V cap C element of cap N cap P cap C
	Slide 91: Showing that cap V cap C element of cap N cap P cap C
	Slide 92: Showing that cap V cap C element of cap N cap P cap C
	Slide 93: Showing that cap V cap C element of cap N cap P cap C
	Slide 94: Showing that cap V cap C element of cap N cap P cap C
	Slide 95: Showing that cap V cap C element of cap N cap P cap C
	Slide 96: Showing that cap V cap C element of cap N cap P cap C
	Slide 97: More On Reductions
	Slide 98: More reductions!
	Slide 99: Does P=NP
	Slide 100
	Slide 101: Another reduction: 3-Coloring
	Slide 102: 3-Coloring
	Slide 103: Showing that 3 cap C element of cap N cap P cap C
	Slide 104: Showing that cap V cap C element of cap N cap P cap C
	Slide 105: 3 cap S cap A. cap T less than or equal to sub p , 3 cap C
	Slide 106: 3 cap S cap A. cap T less than or equal to sub p , 3 cap C
	Slide 107: 3 cap S cap A. cap T less than or equal to sub p , 3 cap C
	Slide 108: 3 cap S cap A. cap T less than or equal to sub p , 3 cap C
	Slide 109: 3 cap S cap A. cap T less than or equal to sub p , 3 cap C
	Slide 110: 3 cap S cap A. cap T less than or equal to sub p , 3 cap C
	Slide 111: 3 cap S cap A. cap T less than or equal to sub p , 3 cap C
	Slide 112: 3 cap S cap A. cap T less than or equal to sub p , 3 cap C
	Slide 113: 3 cap S cap A. cap T less than or equal to sub p , 3 cap C
	Slide 114: (VERY informal) proof of reduction
	Slide 123: Conclusions / Other Complexity classes
	Slide 124: A couple complexity classes we won’t see:
	Slide 125: Complexity class diagram
	Slide 126: Conclusions!
	Slide 127: If we have time

