
COMPLEXITY THEORY
DISCRETE MATHEMATICS AND THEORY 2

MARK FLORYAN



GOALS!

1. Measuring Time and Space complexity of algorithms on Turing Machines (You 

already know a lot of this!)

2. Introducing the most famous complexity classes (P, NP, NP-Hard, etc.)

3. Showing how a difficult a problem is through the use of mapping reductions 

(you’ve already seen some of this in DSA2)!



PART 1: INTRODUCTION!



OVERVIEW OF THEORY OF COMPUTATION
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PART 1: MEASURING TIME AND SPACE COMPLEXITY



TIME COMPLEXITY

Let 𝑀 be a deterministic Turing machine that halts on all inputs. The running time 

or time complexity of 𝑀 is the function 𝑓: 𝒩 → 𝒩, where 𝑓(𝑛) is the maximum 

number of steps that 𝑀 uses on any input of length 𝑛. If 𝑓(𝑛) is the running time 

of 𝑀, we say that 𝑀 runs in time 𝑓(𝑛) and that 𝑀 is an 𝑓(𝑛) time Turing 

machine. Customarily we use 𝑛 to represent the length of the input.

Short version: 𝑓(𝑛) is the worst 

case runtime for machine 𝑀 as 

a function of input size 𝑛.

You should already be familiar 

with this definition / concept



REVIEW: TIME COMPLEXITY

𝑂(𝑓 𝑛 ), 𝑜(𝑓 𝑛 ) Asymptotic upper bounds

The following items, you should already know from previous courses.

Ω(𝑓 𝑛 ), 𝜔(𝑓 𝑛 ) Asymptotic lower bounds

Θ(𝑓 𝑛 ) Asymptotic tight bound

1, log 𝑛 , 𝑛, 𝑛𝑙𝑜𝑔 𝑛 , 𝑛2, 𝑛3 Some common complexity classes

log𝑎 𝑛 ∈ 𝑜 𝑛𝑏 ∈ 𝑜(𝑐𝑛)
Every log is bounded by any polynomial is bounded by any 

exponential



QUICK NOTE ON NON-DETERMINISTIC TIME

What about non-deterministic Turing machines (NTMs)? How do we measure 

running time of such a device?

With deterministic 

computation, we simply look 

at longest the one branch of 

computation can possibly be.
For non-deterministic deciders 

(does not loop forever), we 

measure the length of the 

longest branch of  computation



QUICK NOTE ON NON-DETERMINISTIC TIME

Theorem: Every NTM that runs in time f(𝑛) has an equivalent DTM that runs in 

time 𝑂(2𝑂(𝑓 𝑛 ) 



COMPARING NTM AND DTM

Theorem: Every NTM that runs in time 𝑓(𝑛) has an equivalent DTM that runs in 

time 𝑂(2𝑂(𝑓 𝑛 ) 

Here, 𝑓(𝑛) is the 

longest branch of  

computation

let 𝑏 be the maximum number of branches this computation 

can have

The computation tree has at most 𝑏𝑓(𝑛) leaves and each 

branch to each node has length at most 𝑓(𝑛)

Construct a DTM with three tapes that simulates this NTM as we did in the Turing 

Machine section earlier. This machines manually computes / simulates each 

branch individually.

Thus, this machine simulates 𝑏𝑓(𝑛) branches at 𝑓 𝑛  

time each for total time 𝑓 𝑛 𝑏𝑓(𝑛) ∈ 𝑂(2𝑂(𝑓(𝑛))



PART 1: COMPLEXITY CLASSES



PROBLEM TYPES



PROBLEM TYPES

Given a problem we want to solve, there are three important variations of that problem

Given G and s, return the 

weight of the path P that 

minimizes the sum of the 

weights of the edges along P.

Traveling Salesperson Problem: Given a weighted graph G and start node s, find the 

minimum weight path starting and ending at s that visits every node exactly once.

Given G, s, and integer k, 

can you find a valid path 

with total weight less than 

or equal to k?

Given G, s, path P, and 

integer k

Is path P valid and is it 

weight less than or equal to 

k?

Function Problem:

Return the actual solution

Decision Problem:

Convert problem to have Boolean output
Verification Problem:

Given a solution, verify if it works



WHY DO THESE MATTER?

Given G and s, return the 

weight of the path P (list of 

nodes to visit in order) that 

minimizes the sum of the 

weights of the edges along P.

Given G, s, and integer k, 

can you find a valid path 

with total weight less than or 

equal to k?

Given G, s, path P, and 

integer k

Is path P valid and is it 

weight less than or equal to 

k?

Function Problem:

Return the actual solution

Decision Problem:

Convert problem to have Boolean output
Verification Problem:

Given a solution, verify if it works

If you can solve the decision 

problem you can also solve the 

function problem Why?

Because if you can solve the 

decision problem, you can 

repeatedly invoke it with lower 

values of k until the Yes 

responses change to No



WHY DO THESE MATTER?

Given G and s, return the 

weight of the path P (list of 

nodes to visit in order) that 

minimizes the sum of the 

weights of the edges along P.

Given G, s, and integer k, 

can you find a valid path 

with total weight less than k?

Given G, s, path P, and 

integer k

Is path P valid and is it 

weight less than or equal to 

k?

Function Problem:

Return the actual solution

Decision Problem:

Convert problem to have Boolean output
Verification Problem:

Given a solution, verify if it works

If you can solve the verification 

problem, does it help you solve 

the decision problem?

Answer: Yes! If verifier exists, we 

can call the verifier over and 

over again with possible paths 

until we get a Yes response. We 

will see soon though that this is 

usually NOT efficient



WHY DO THESE MATTER?

Given G and s, return the 

weight of the path P (list of 

nodes to visit in order) that 

minimizes the sum of the 

weights of the edges along P.

Given G, s, and integer k, 

can you find a valid path 

with total weight less than k?

Given G, s, path P, and 

integer k

Is path P valid and is it 

weight less than or equal to 

k?

Function Problem:

Return the actual solution

Decision Problem:

Convert problem to have Boolean output
Verification Problem:

Given a solution, verify if it works

We will focus on these two from 

now on because Turing machines 

return Yes/No answers.



A NOTE ON VERIFICATION

Given G, s, path P, and 

integer k

Is path P valid and is it 

weight less than or equal to 

k?

Verification Problem:

Given a solution, verify if it works

Verification is technically more general than “given a 

solution, verify it if works”.

Formal Definition: Given a string w and certificate c, use c 

as proof to verify that w is in the language. 

Given a language A, a verifier V is correct if and only if 

𝑤 ∈ 𝐴 → ∃𝑐 | 𝑉(𝑤, 𝑐) accepts



COMPARING NTM AND DTM

Theorem: A problem P is verifiable in polynomial time by a DTM if and only if it 

is solvable (decision problem) in polynomial time by an NTM

Here, polynomial time 

means the runtime of 

the machine is worst-

case Θ(𝑛𝑐) for 𝑐 ∈ 𝒩



COMPARING NTM AND DTM

Theorem: A problem P is verifiable in polynomial time by a DTM if and only if it 

is solvable (decision problem) in polynomial time by an NTM

Direction 1: If a problem is verifiable by a DTM in polynomial time, then it is solvable in 

polynomial time by an NTM.

Given: P is verifiable by 

a DTM. Thus, the DTM 

that verifies instances 

of this problem exists

DTM Verifier 

for P

Potential 

solution s

Yes/No

s is valid 

solution

NTM Solver for P
DTM Verifier 

for P No

DTM Verifier 

for P No

DTM Verifier 

for P
Yes

DTM Verifier 

for P No

Possible 

solution 1

Possible 

solution 2

Possible 

solution 3

Possible 

solution 4

𝜖
𝜖

𝜖

𝜖



COMPARING NTM AND DTM

Theorem: A problem P is verifiable in polynomial time by a DTM if and only if it 

is solvable (decision problem) in polynomial time by an NTM

Direction 2 (Harder): If a problem is solvable by an NTM in polynomial time, then it is 

verifiable in polynomial time by a DTM.

Given: P is solvable 

by an NTM. Thus, 

the NTM that exists

NTM Solver 

for P
Input

Yes/No

decision

NTM Solver for P

N

N

N

N

N

Y

Purple path that 

leads to Yes is a 

certificate for P. 

Why?



COMPARING NTM AND DTM

Theorem: A problem P is verifiable in polynomial time by a DTM if and only if it 

is solvable (decision problem) in polynomial time by an NTM

Direction 2 (Harder): If a problem is solvable by an NTM in polynomial time, then it is 

verifiable in polynomial time by a DTM.

NTM Solver for P

N

N

N

N

N

Y

Verifier for this language:

    Given w (input) and c (list of which branch to take at each step

    Simulate P

    At each step, check c to see which branch to take

    Accept iff  P accepts



COMPARING NTM AND DTM

Theorem: A problem P is verifiable in polynomial time by a DTM if and only if it 

is solvable (decision problem) in polynomial time by an NTM

This theorem is critical to 

remember! It will be very 

important in a moment.



COMPLEXITY CLASSES (FINALLY!)



THE CLASS P

The class P is the set of all 

problems that can be solved 

by a deterministic Turing 

machine in time 𝑂(𝑛𝑐) such 

that 𝑐 ∈ 𝒩

P

Important: P is a set of 

problems (not solutions, 

not algorithms)

Example problems in this set include:

Sorting a list of numbers

Inserting into a binary tree

Computing the average of a list of numbers

Printing “hello world”

Find() in a hash table

…and many more



THE CLASS NP

The class NP is the set of all 

problems that can be solved by a 

non-deterministic Turing machine 

in time 𝑂(𝑛𝑐) such that 𝑐 ∈ 𝒩

NP

Remember: We also showed that any 

NTM solver has an equivalent 

exponential time DTM. So all problems 

in NP are solvable in exponential time. 

Example problems in this set include:

Everything in P (will prove shortly)

Traveling Salesperson Problem

Circuit Satisfiability

Vertex Cover

Independent Set

Subset Sum

…and many more

Equivalent Definition: By our 

recently proved theorem, this also 

means these problems can be 

verified in polynomial time using 

a deterministic Turing machine!



𝑃 ⊆ 𝑁𝑃

Is 𝑃 ⊂ 𝑁𝑃? This is 

still unknown today!

Everything in P can be solved in 

polynomial time by a DTM, so it 

can definitely be verified as well 

(just ignore the certificate and 

solve the problem directly)

NP

P

Easy Problems

Hard Problems

Proof:



𝑃 ⊆ 𝑁𝑃

NP

P

Easy Problems

Hard Problems

It is true that we DO NOT know if  

there are actually any unique problems 

in NP (that are not also in P). 

We are interested in finding the 

hardest problem in NP (at the VERY 

top of the bubble). Why? It is the 

MOST likely to not be in P if  𝑃 ≠ 𝑁𝑃



NP-HARD

NP

P

Easy Problems

Hard Problems

NP-Hard problems are defined to be 

all problems that are this hard OR 

harder.

Suppose we have find the 

hardest problem in NP



NP-HARD

NP

P

Easy Problems

Hard Problems

NP-Hard
Goes up to indefinite 

difficulty.

Note that NP-Hard and NP 

intersect here. Problems in this 

intersection are the hardest 

problems in NP



NP-COMPLETE

This section (purple) is the set 

of NP-Complete problems. The 

hardest problems in NP

NP

P

Easy Problems

Hard Problems

NP-Hard

Definition: A problem is NP-Complete if and 

only if the problem:

1. Is in NP

2. Is NP-Hard



NP-COMPLETE

A different definition of NP-Hard

NP

P

Easy Problems

Hard Problems

NP-Hard

Definition: A problem A is NP-Hard if and 

only if ∀𝐵 ∈ 𝑁𝑃, 𝐵 ≤𝑝 𝐴

𝐵 ≤𝑝 𝐴 means that problem A is 

harder than problem B, shown through 

a reduction, which we will see in a 

moment.



MORE ON REDUCTIONS:
MAPPING REDUCTIONS



WHAT WE HAVE ALREADY SEEN

Reduction: A reduction exists between problems A and B if a solution to B can 

be used to develop a solution for A.

Problem A

Solve problem B

Do easy work

Do more easy work

…

Problem B

Solve problem B
Reduces to

This kind of reduction involves the 

decidability of Problems A and B. If  B 

is decidable then A is decidable!



MAPPING REDUCTION

One way (green 

route) to solve A is 

to use the decider 

in 𝛩(𝐴𝑛) time

A mapping reduction uses a reduction function R() to map instances of one problem (A) to instances of another problem (B) such that for any input 

string 𝑤, 𝐴 𝑤 == 𝐵(𝑅 𝑤 )

Map instances of A to 

instances of B in Θ(𝑅𝐴𝐵) time.

Problem A

Solution A

Decider for A that runs in 

Θ(𝐴𝑛) time.

Problem B

Solution B

Decider for B that runs in 

Θ(𝐵𝑛) time.

Map solutions of B to solutions 

of A in Θ(𝑅𝑆𝐵𝐴) time.

Another way to solve A is to use the purple path. Takes:

Θ(𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴)



REDUCTIONS YOU’VE PROBABLY SEEN BEFORE!

Reduction:

Max-Flow ≤≥Θ(1) Min-Cut

Bi-Partite Matching ≤Θ( V + E ) Max-Flow

FindMedian ≤Θ(1) Sorting

FindMin ≤Θ(1) Sorting

Details:

No conversion necessary. Value of maximum flow is equal to capacity of minimum cut 

on the same, unaltered graph.

Conversion involved adding capacities to edges, adding source and sink node, adding 

edges to / from source / sink node, etc.

No conversion necessary. Sort the list, then pull out the middle element in the array.

No conversion necessary. Sort the list, then pull the first element in the array. Note that 

this one is a reduction to a HARDER problem. So won’t be used in practice.



RUNTIME COMPARISON

Map instances of A to 

instances of B in Θ(𝑅𝐴𝐵) time.

Problem A

Solution A

Decider for A that runs in 

Θ(𝐴𝑛) time.

Problem B

Solution B

Decider for B that runs in 

Θ(𝐵𝑛) time.

Map solutions of B to solutions 

of A in Θ(𝑅𝑆𝐵𝐴) time.

Which Algorithm is faster?

If 𝑅𝐴𝐵 + 𝑅𝑆𝐵𝐴 ∈ 𝑂(𝐵𝑛), then this represents a 

valid reduction and 𝐴 ≤𝑅𝐴𝐵+𝑅𝑆𝐵𝐴
𝐵

If 𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴 ∈ 𝑂(𝐴𝑛), then this is the 

best algorithm for A (or equally the best)

𝐴𝑛

𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴



RUNTIME COMPARISON

Which Algorithm is faster?

𝐴𝑛

𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴 ∈ Θ(𝐵𝑛)

Harder Problems 

(fastest algorithm 

has slower runtime)

Easy Problems 

(fastest algorithm has 

very fast runtime)

𝐴𝑛𝐵𝑛

Not surprisingly, if  these two 

algorithms have same overall 

runtime, then either can be used (they 

are equivalent).



RUNTIME COMPARISON

Harder Problems 

(fastest algorithm 

has slower runtime)

Easy Problems 

(fastest algorithm has 

very fast runtime)

𝐴𝑛

𝐵𝑛

If  solving A through reduction is 

SLOWER than directly solving A, this 

means problem B is simply harder than 

problem A (but the reduction is still 

valid)

Which Algorithm is faster?

𝐴𝑛

𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴 ∈ Θ(𝐵𝑛)



RUNTIME COMPARISON

Harder Problems 

(fastest algorithm 

has slower runtime)

Easy Problems 

(fastest algorithm has 

very fast runtime)

𝐴𝑛

𝐵𝑛

If  the reduction is FASTER than directly solving 

A, What does this mean? It means the 

reduction IS the best way to solve A (and this 

picture doesn’t make sense)

Which Algorithm is faster?

𝐴𝑛

𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴 ∈ Θ(𝐵𝑛)



RUNTIME COMPARISON

Which Algorithm is faster?

𝐴𝑛

𝑅𝐴𝐵 + 𝐵𝑛 + 𝑅𝑆𝐵𝐴 ∈ Θ(𝐵𝑛)

Harder Problems 

(fastest algorithm 

has slower runtime)

Easy Problems 

(fastest algorithm has 

very fast runtime)

𝐴𝑛 = 𝐵𝑛

…and the direct algorithm for A is 

obsolete. The reduction through problem 

B is the direct way to solve A

OLD 𝐴𝑛



RUNTIME COMPARISON

Suppose time goes on, and somebody find a 

FASTER way to solve B in 𝐵𝑛
′  time, how will the 

picture to the right change as a result?

Harder Problems 

(fastest algorithm 

has slower runtime)

Easy Problems 

(fastest algorithm has 

very fast runtime)

𝐴′𝑛 = 𝑅𝐴𝐵 + 𝐵′𝑛 + 𝑅𝑆𝐵𝐴

A now has a faster algorithm also! So 

improving B’s algorithm improves A’s. 

They are linked in this direction!

𝐴𝑛 = 𝐵𝑛

This is ONLY true if  the reduction stays 

valid, meaning the conversion is still 

fast: 𝑅𝐴𝐵 + 𝑅𝑆𝐵𝐴 ∈ 𝑂(𝐵𝑛
′ )



RUNTIME COMPARISON

Now suppose time goes on and someone finds a 

VERY fast algorithm for A. What could 

happen?

Harder Problems 

(fastest algorithm 

has slower runtime)

Easy Problems 

(fastest algorithm has 

very fast runtime)

𝐵′𝑛

𝐴′𝑛

Now, the reduction may still be valid, but we are 

back to B being strictly harder than A



BIG PICTURE

So, via reduction

NP

P

Easy Problems

Hard Problems

NP-Hard

A valid reduction 𝐴 ≤𝑓(𝑛) 𝐵 establishes that B is at 

least as hard as A

Some related facts!

If valid reductions exist in both directions: 𝐴 ≤ 𝐵 and 𝐵 ≤
𝐴, then the two problems are equally as hard

NP-Complete problems are the hardest in NP, so by definition 

there is a valid reduction from anything in NP to them.

How fast does a reduction between NP-Complete problems need 

to be? Just some polynomial. Why? We write this as 𝐴 ≤𝑝 𝐵



PROVING NP-COMPLETENESS

Usually we do the bolded ones

NP

P

Easy Problems

Hard Problems

NP-Hard

To prove a problem A is NP-Complete, show that:

1. 𝐴 ∈ 𝑁𝑃

How? Either:

 Solve in Polynomial time with an NTM

 Verify in Polynomial time with a DTM

2. Is NP-Hard

How? Either:

 Show that ∀𝐵∈𝑁𝑃𝐵 ≤𝑝 𝐴

 Pick known NP-Complete problem B and show 𝑩 ≤𝒑 𝑨

But for second step, we need a 

known NP-Complete problem. 

What was the first one?



COOK-LEVIN THEOREM



COOK-LEVIN THEOREM

Cook-Levin Theorem: The Satisfiability (SAT) problem is NP-Complete

Incredibly famous 

theorem. Established 

the first known NP-

Complete problem!
Developed 

independently by 

Stephen Cook (US) and 

Leonid Levin (USSR) in 

1971 & 1973



CIRCUIT SATISFIABILITY (CIRCUIT-SAT)

Given a circuit with 

boolean inputs, AND, OR, 

and NOT gates…is it 

possible to assign values 

to the input such that the 

output is TRUE? 



CIRCUIT SATISFIABILITY (CIRCUIT-SAT)

Solutions:

1110111110011001

1010111111011001

0110111110111001

0110111110011001

1110111111011001

1010111110011001

1010111110111001

0110111111011001

1110111110111001



CIRCUIT-SAT VS SAT

(v[0] || v[1]) && (!v[1] || 

!v[3]) && (v[2] || v[3]) && 

(!v[3] || !v[4]) && (v[4] || 

!v[5]) && (v[5] || !v[6]) && 

(v[5] || v[6]) && (v[6] || 

!v[15]) && (v[7] || !v[8]) && 

(!v[7] || !v[13]) && (v[8] || 

v[9]) && (v[8] || !v[9]) && 

(!v[9] || !v[10]) && (v[9] || 

v[11]) && (v[10] || v[11]) && 

(v[12] || v[13]) && (v[13] || 

!v[14]) && (v[14] || v[15])

These are two variations of  the exact same problem. We will stick with the right side (SAT) from now on



PROOF OF THE COOK-LEVIN THEOREM



𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

To show that 𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶, we must show both that:

𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial 

Time

𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

Show that ∃𝑥∈𝑁𝑃𝐶𝑥 ≤𝑝 𝑆𝐴𝑇

OR ∀𝒙∈𝑵𝑷𝒙 ≤𝒑 𝑺𝑨𝑻

Here, we must use the second 

(bold) option because there 

are not any NPC problems 

that exist yet! Ugh!!



𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

Let’s do this one first:

𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial 

Time

Given variables V, formula F, and potential values for each 

variable V’:

1. Scan over formula F for first operator (Op) that should be 

applied (deepest in parens and/or lowest precedence)

2. Find the two variables X and Y on each side of Op, this 

gives X Op Y (example: V1 AND V7)

3. Apply operator Op to the values X and Y given by V’ or by 

result of a previous operation and replace X Op Y with this 

Boolean result.

4. Loop back to step 1 until only one Boolean remains. This 

Boolean is true if  and only if  the solution V’ is verified.

Verifier:

Needs to be 

polynomial runtime, 

is it? Yes!



𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

To show that 𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶, we must show both that:

𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial 

Time

𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

Show that ∃𝑥∈𝑁𝑃𝐶𝑥 ≤𝑝 𝑆𝐴𝑇

OR ∀𝒙∈𝑵𝑷𝒙 ≤𝒑 𝑺𝑨𝑻

This part is done!!



SAT IS NP-HARD

𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

Show that ∃𝑥∈𝑁𝑃𝐶𝑥 ≤𝑝 𝑆𝐴𝑇

OR ∀𝒙∈𝑵𝑷𝒙 ≤𝒑 𝑺𝑨𝑻

As we stated. before, we have to use 

the second option because there 

(when this proof was done) are no 

NP-Complete problems yet!



SAT IS NP-HARD

𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∀𝒙∈𝑵𝑷𝒙 ≤𝒑 𝑺𝑨𝑻

NTM Decider 

for x

Choose arbitrary 𝑥 ∈ 𝑁𝑃 Reduce problem x To an instance of SAT

𝑥1  ∧ 𝑥2  ∨ 𝑥3 ∧ 𝑥2 …

How are we going to do this? 



SAT IS NP-HARD

𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∀𝒙∈𝑵𝑷𝒙 ≤𝒑 𝑺𝑨𝑻

NTM Decider 

for x

Choose arbitrary 𝑥 ∈ 𝑁𝑃 Reduce problem x To an instance of SAT

Tape moved right AND 1 written to first cell of tape AND …

IDEA: For any generic problem x in NP, it has a decider NTM. Convert that NTM into a Boolean 

expression that describes the operation of the machine. Why is this a valid reduction?



VARIABLES WE NEED

Variable Meaning How many

Tijk True if tape cell i contains symbol j at step k of the 

computation

O(p(n)2)

Hik True if the M’s read/write head is at tape cell i at step 

k of the computation

O(p(n)2)

Qqk True if M is in state q at step k of the computation O(p(n))

𝑞 ∈ 𝑄
−𝑝 𝑛 ≤ 𝑖 ≤ 𝑝 𝑛
𝑗 ∈ Σ
0 ≤ 𝑘 ≤ 𝑝(𝑛)

Note that p(n) is the time the 

original NTM takes and 

𝑝 𝑛 ∈ Θ(𝑛𝑐)

Some constraints:



CREATE A CONJUNCTION ‘B’ OF…

Expression Conditions Interpretation How many

Tij0 Tape cell i initially 

contains symbol J

Initial tape state; blank symbols 

above n

O(p(n))

Qs0 Initial state of the NTM 1

H00 Initial position of the read/write head 1

Tijk → Tij’k j != j’ One symbol per tape cell O(p(n)2)

Tijk = Tij(k+1)  Hjk Tape remains unchanged unless 

written

O(p(n)2)

Qqk → Qq’k q  q’ Only one state at a time O(p(n))

Hjk → Hj’k i  i’ Only one head position at a time O(p(n)2)

(Hik  Qqk  Tik) 

→ (H(i+d)(k+1)  

Qq’(k+1)  Ti’(k+1))

(q, , q’, ’, d)  



Possible transitions at computation 

step k when head position is at 

position I

O(p(n)2)

fF Qfp(n)

Must finish in an accepting state 1



IS THE REDUCTION VALID?

Yes!

The number of sub-expressions is:

2p(n) + 4p(n)2 + 3 = O(p(n)2)

and each is computed in less than that.

NTM for x accepts iff and only if SAT equation can be satisfied The time and space complexity of the reduction is polynomial

If there is an accepting 

computation for the NTM on input 

I, then B is satisfiable by assigning 

Tijk, Hjk, and Qjk their intended 

interpretations.



𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

To show that 𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶, we must show both that:

𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial 

Time

𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∀𝒙∈𝑵𝑷𝒙 ≤𝒑 𝑺𝑨𝑻

Thus, it is proven!!



OTHER NP-COMPLETE PROBLEMS (REDUCTIONS)



3-SAT



3-SAT

𝑉 = 𝑣1 ∨ 𝑣2 ∨ 𝑣3 ∧ 𝑣4 ∨ 𝑣1 ∨ 𝑣2 ∧ 𝑣4 ∨ 𝑣3 ∨ 𝑣1 ∧ ⋯

3-SAT = Can a provided Boolean expression in 3-Conjunctive-Normal Form (3-CNF) be satisfied?

Is it easier to decide 3-SAT because the format is simpler?

Each Clause contains a 

disjunction (OR) of exactly 3 

literals (or negated literals)

The expression must be a 

conjunction (AND) of 

multiple clauses



SHOWING THAT 3𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

To show that 3𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶, we must show both that:

3𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial 

Time

3𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∃𝒙∈𝑵𝑷𝑪𝒙 ≤𝒑 𝟑𝑺𝑨𝑻

This one, as usual, 

is not difficult.

This time we can reduce from a 

concrete, known, NPC problem. 

We only have SAT so far, so 

that is what we will choose!



SHOWING THAT 3𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

3𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial 

Time

This is trivial. The verifier we 

developed for SAT will also work 

for 3SAT.



SHOWING THAT 3𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

3𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∃𝒙∈𝑵𝑷𝑪𝒙 ≤𝒑 𝟑𝑺𝑨𝑻

𝑺𝑨𝑻 ≤𝒑 𝟑𝑺𝑨𝑻

Given a generic SAT input, can we convert it into an equivalent formula in 3SAT? 

Need to show 3SAT is at 

least as hard as SAT. 

How? Show a reduction.

SAT input x:

e.g., 

 = ((x1 → x2)  ((x1  x3) 

 x4))  x2

Equivalent 3SAT formula:

e.g.,

’i = (y1y2x2)  (y1y2x2) 

 (y1y2x2)  (y1y2x2)…



CONVERTING SAT TO 3-SAT, STEP 1

Input:

 = ((x1 → x2)  ((x1  x3)  x4))  x2 

Step 1: Parse the 

expression into an 

expression tree



CONVERTING SAT TO 3-SAT, STEP 2

Step 2: Introduce a variable 𝑦𝑖  for each internal 

node. This variable will represent whether or not that 

subtree expression evaluated to True or False

We can then re-write our expression:

’ =    y1  (y1  (y2  x2))

    (y2  (y3  y4))

    (y3  (x1 → x2))

    (y4  y5)

    (y5  (y6  x4))

    (y6  (x1  x3))



CONVERTING SAT TO 3-SAT, STEP 3

• ’ = y1  (y1  (y2  x2)

    (y2  (y3  y4))

    (y3  (x1 → x2))

    (y4  y5)

    (y5  (y6  x4))

    (y6  (x1  x3))

Step 3:

Build a truth table for each clause ’i:

y1 y2
X2 (y1  (y2  

x2))

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 1



CONVERTING SAT TO 3-SAT, STEP 4 / 5

’i = 

    (y1y2x2) 

    (y1y2x2) 

    (y1y2x2) 

    (y1y2x2)

Step 4: For each clause, construct a DNF 

(disjunctive normal form) for when it is False 

(based on truth table)

y1 y2 x2 (y1  (y2  

x2))

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 1

Step 5: Take this formula and negate it to get all 

the instances where the clause is true in CNF 

(conjunctive normal form).

’i = (y1y2x2)  (y1y2x2)  (y1y2x2)  

(y1y2x2)

Negate formula

’i = (y1y2x2)  (y1y2x2)  (y1y2x2) 

 (y1y2x2)



CONVERTING SAT TO 3-SAT, STEP 6

’i = (y1  y2  x2)  (y1  y2  x2)  (y1  y2  x2)  (y1  y2  x2)

Step 6: Almost done. This works but some clauses may have only 1 or 2 literals (3 are required for every single 

clause). Add dummy variables to force each clause to have three literals.

Case 3: Clause has only 1 literal

(𝑣𝑖)

𝑣𝑖 ∨ 𝑝 ∨ 𝑞 ∧ 𝑣𝑖 ∨ ¬𝑝 ∨ 𝑞

∨ 𝑣𝑖 ∨ 𝑝 ∨ ¬𝑞 ∧ (𝑣𝑖 ∨ ¬𝑝 ∨ ¬𝑞)

Becomes:

Introduce dummy 

variables p and q

Case 2: Clause has only 2 literals

(𝑣𝑖 ∨ 𝑣𝑗)

𝑣𝑖 ∨ 𝑣𝑗 ∨ 𝑝 ∧ 𝑣𝑖 ∨ 𝑣𝑗 ∨ ¬𝑝

Becomes:

Introduce dummy 

variable p

Case 1: Clause has 3 literals

(𝑣𝑖 ∨ 𝑣𝑗 ∨ 𝑣𝑘)

𝑣𝑖 ∨ 𝑣𝑗 ∨ 𝑣𝑘

Do nothing, 

already fine



SHOWING THAT 3𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶

To show that 3𝑆𝐴𝑇 ∈ 𝑁𝑃𝐶, we must show both that:

3𝑆𝐴𝑇 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial 

Time

3𝑆𝐴𝑇 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∃𝒙∈𝑵𝑷𝑪𝒙 ≤𝒑 𝟑𝑺𝑨𝑻

We are done!!



CLIQUES



CLIQUE

A Clique in a graph G is a set of nodes such that each one is connected to 

each other in the set

In other words, it is a maximal 

sub-graph of G

Problem: Find the maximum size 

clique in a graph G



CLIQUE

A Clique in a graph G is a set of nodes such that each one is connected to 

each other in the set

Can we frame this as a Decision Problem?

Given a graph G and an integer k, return 

Yes iff G has a clique of size k or larger.



SHOWING THAT CLIQUE ∈ 𝑁𝑃𝐶

To show that 𝐶𝑙𝑖𝑞𝑢𝑒 ∈ 𝑁𝑃𝐶, we must show both that:

C𝑙𝑖𝑞𝑢𝑒 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial 

Time

C𝑙𝑖𝑞𝑢𝑒 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

∃𝒙∈𝑵𝑷𝑪𝒙 ≤𝒑 𝑪𝒍𝒊𝒒𝒖𝒆

As usual, this one 

is pretty simple For this one, we can 

choose SAT or 3-SAT



SHOWING THAT CLIQUE ∈ 𝑁𝑃𝐶

C𝑙𝑖𝑞𝑢𝑒 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial 

Time

Verifier:

Given G, k, and a subset 𝑉′ ⊆ 𝑉 of nodes

1. Verify that number of nodes in V’ is k or larger

2. For each pair of nodes (p,q) in V’:

1. check that edge p,q exists in G

2. If not, return NO

3. Return YES



SHOWING THAT CLIQUE ∈ 𝑁𝑃𝐶

C𝑙𝑖𝑞𝑢𝑒 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

3-SAT≤𝒑 𝑪𝒍𝒊𝒒𝒖𝒆 We choose 3-SAT

Goal: Given a generic 3-SAT input, can we convert it into graph and integer k such that 

the 3-SAT formula is satisfiable IFF the graph has a click of at least size k? 

Graph G and integer kInput: 3SAT formula:

e.g.,

’i = (y1y2x2)  (y1y2x2) 

 (y1y2x2)  (y1y2x2)…

Converting a Boolean formula into a graph is strange, right? Let’s see how it works!



3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, INTUITION

TIP: When doing a 

reduction, think about the 

“spirit” of how the problems 

relate to each other

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

With a 3-Sat formula, we have:

1. A bunch of “things” (variables)

2. Some can be assigned TRUE without issue 

(they are “connected”)

3. Each clause must have a TRUE item that 

is connected (valid) with the other items 

in the other clauses



3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, STEP 1

Step 1: Create a graph G 

with nodes where each 

variable in 𝜃 represents a 

node in G

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G



3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, STEP 1

Step 1: Create a graph G 

with nodes where each 

variable in 𝜃 represents a 

node in G

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

Goal: The nodes we 

choose in our clique will 

be the same variable we 

choose to set to TRUE in 𝜃



3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, STEP 2

Step 2: Connect any two 

nodes that are in different 

clauses AND can be set to 

true at the same time

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

X

We connect these 

two because they do 

not conflict

We cannot connect 

these two because they 

contradict one another



3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, STEP 2

Step 2: Connect any two 

nodes that are in different 

clauses AND can be set to 

true at the same time

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G



3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, STEP 3

Step 3: Set k equal to the 

number of clauses in 𝜃

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

k=3



3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, PROOF

Claim:

𝜃 is satisfiable IFF G contains a 

clique of size 3

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

Intuition:

One clique of  size 3 is shown. The 

nodes in the clique represent three 

variables, one per clause, that can be 

set to TRUE without issue. 

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

k=3



3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, PROOF

Direction 1:

𝜃 is satisfiable → G contains 

a clique of size k

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

k=3

Proof:

𝜃 is satisfiable

This means at least one variable is true in each clause

Take one true variable from each clause (k total)

Find their nodes in G

These nodes MUST be a clique of size k

   Each of the k nodes is connected to each other:

      They are in a different clause

      They can both be assigned true

Q.E.D.



3𝑆𝐴𝑇 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒, PROOF

Direction 2:

G contains a clique of  size k 

→ 𝜃 is satisfiable

𝜃 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

Consider this 3-SAT formula:

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1 𝑥2 𝑥3
G

k=3

Proof:

G contains a clique of size k

Select the k nodes

Find their respective variables in 𝜃

Each of these variables must be in a different clause

   By how G was constructed

Each variable can be set to TRUE without issue

   By definition of how edges were added to G

Thus, these variables must satisfy 𝜃



VERTEX COVER



VERTEX COVER

A Vertex Cover (VC) on a graph G = (V,E) is a subset of vertices S  V such that 

every edge in the graph is connected to at least one vertex in S

The purple nodes 

represent a vertex 

cover of  size 3 on 

this graph. Notice 

that every edge 

touches one of these 

nodes

Decision Problem: Does a given graph G have a vertex cover of size k or smaller?

1 2

4 5

76
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SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

To show that 𝑉𝐶 ∈ 𝑁𝑃𝐶, we must show both that:

V𝐶 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial 

Time

𝑉𝐶 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

𝑪𝒍𝒊𝒒𝒖𝒆 ≤𝒑 𝑽𝑪

As usual, this one 

is pretty simple
Let’s use Clique 

this time



SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

V𝐶 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial 

Time

Given graph 𝑮 = (𝑽, 𝑬), integer k and subset 𝑽′ ⊆ 𝑽:

Verify that 𝑉′ ≤ 𝑘, if not reject

For each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸

    Check that 𝑢 ∈ 𝑉′ ∨ 𝑣 ∈ 𝑉′, if not reject

else accept



SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

𝑉𝐶 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

𝑪𝒍𝒊𝒒𝒖𝒆 ≤𝒑 𝑽𝑪

Given a graph G, integer k, 

and looking for a clique of 

size k 

graph G’, integer k’, and 

looking for a vertex cover of 

size k’

1 2

3 4

5 6

G

k=4

G’

k=?

?



SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

Given a graph G, integer k, 

and looking for a clique of 

size k 

graph G’, integer k’, and 

looking for a vertex cover of 

size k’

1 2

3 4

5 6

G

k=4

Simply flip the edges that exist in G and set k to 𝑉 − 𝑘

1 2

3 4

5 6

G

k=2



SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

1 2

3 4

5 6

G

k=4

Claim: G has a clique of size k IFF G’ has a VC of size 𝑉 − 𝑘

1 2

3 4

5 6

G

k=2

…and if the clique in G is nodes 

𝑉′ ⊆ 𝑉, then the cover in G’ is 

exactly the nodes 𝑉 − 𝑉′



SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

1 2

3 4

5 6

G

k=4

Claim: G has a clique of size k IFF G’ has a VC of size 𝑉 − 𝑘

1 2

3 4

5 6

G

k=2

Proof Direction 1: Suppose G has a clique 𝑉′ ⊆ 𝑉 of  size k

Consider nodes 𝑉 − 𝑉′ in G’

In G, every edge between nodes in V’ existed (clique), so none of these edges appear in G’

Thus every edge in G’ touches a node that was not in the clique, which is the exact set 𝑉 −

𝑉′

Q.E.D.



SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

1 2

3 4

5 6

G

k=4

Claim: G has a clique of size k IFF G’ has a VC of size 𝑉 − 𝑘

1 2

3 4

5 6

G

k=2

Proof Direction 2: Suppose G’ has a cover 𝑉′ ⊆ 𝑉 of size 𝑉 − 𝑘

Consider the k nodes 𝑉′′ = 𝑉 − 𝑉′ in G

In G’, no edge between nodes in V’’ exists, otherwise V’ would not be a vertex cover

Thus, in G every edge between nodes in V’’ exists. This is definition of a clique

Q.E.D.



MORE ON REDUCTIONS



MORE REDUCTIONS!

The problems were known to be “hard”, but how 

“hard” was not really quantified until then

In 1972, Richard 

Karp showed a 

number of  problems 

were NP-complete



DOES P=NP

To this day, we still do not know if P and 

NP are distinctly separate. But, we have a 

lot of known NP-Complete problems

NP

P

Easy Problems

Hard Problems

NP-Hard

What would happen if someone found an 

algorithm to solve one of these famous NP-

Complete problems that ran in polynomial 

time? 



NP

P

NP-Hard

If someone finds a 

polynomial time 

algorithm to ANY np-

complete problem, then

P=NP

P-Hard

NP-Hard

Suddenly, through various reductions there is a 

fast (polynomial) algorithm for every NP 

problem!



ANOTHER REDUCTION:
3-COLORING



3-COLORING

Problem Statement:

Given graph G, and three colors c1, c2, c3 (not really 

given as input), can we color the graph with these 

colors such that no adjacent nodes have the same 

color.

Turns out that 3-Coloring is NP-Complete, and 

problems like this should start “feeling” NP-Complete 

to you.



SHOWING THAT 3𝐶 ∈ 𝑁𝑃𝐶

To show that 3C ∈ 𝑁𝑃𝐶, we must show both that:

3𝐶 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial 

Time

3𝐶 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

𝟑𝑺𝑨𝑻 ≤𝒑 𝑽𝑪

As usual, this one 

is pretty simple
Let’s use 3-SAT 

this time



SHOWING THAT 𝑉𝐶 ∈ 𝑁𝑃𝐶

3𝐶 ∈ 𝑁𝑃

Provide a verifier TM that runs in Polynomial 

Time

Given graph 𝑮 = (𝑽, 𝑬), and color assignments C for each node in V:

Verify that only 3 unique colors exist in C, if not reject

Verify that each node was assigned exactly one color in C, if not reject

For each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸

    Check that 𝐶 𝑢 ≠ 𝐶[𝑣], if not reject

else accept



3𝑆𝐴𝑇 ≤𝑝 3𝐶

3𝐶 ∈ 𝑁𝑃 − 𝐻𝐴𝑅𝐷

𝟑𝑺𝑨𝑻 ≤𝒑 𝑽𝑪

Given a boolean formula in 3-CNF 𝜃 

that we want to test satisfiability on 

graph G that is 3-Colorable if and 

only if 𝜃 is satisfiable

G

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦)



3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the fact that variables can only be set to True and False.

- Model the variables and the fact that each variable XOR its 

negation can be True.

- Model the fact that at least one variable per clause must be 

chosen.



3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the fact that variables can only be set to True and False.

- Model the variables and the fact that each variable XOR its 

negation can be True.

- Model the fact that at least one variable per clause must be 

chosen.

T F

N

Whatever color these top two nodes are assigned will 

represent True / False for the remainder of the coloring.

Notice that if we connect a variable (node) to this 

Neutral node, then that variable MUST take on the color 

assigned to True or False



3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the variables and the fact that each variable XOR its 

negation can be True.

- Model the fact that at least one variable per clause must be 

chosen.T F

N

𝑢 ¬𝑢

This variable is connect to the Neutral, so it MUST take the True color or the false color.

This variable cannot take the Neutral color so it 

must be the opposite of whatever u took. One is 

true, the other is false.



3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the variables and the fact that each variable XOR its 

negation can be True.

- Model the fact that at least one variable per clause must be 

chosen.

T F

N

𝑢 ¬𝑢

𝑣 ¬𝑣

𝑤 ¬𝑤

𝑥 ¬𝑥

𝑦 ¬𝑦

So far, so good. By assigning every node one 

of three colors, we can effectively choose which 

variables to set to True / False!



3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the fact that at least one variable per clause must be chosen.

out

Claim:

Three fully-connected nodes can act as an OR gate. The 

output node can be colored with the True color IFF at least 

one of the input nodes is colored with the true color.

In 

1

In 

2

True / True

F

N

T

T

T

True / False

F

N

T

T

F

False / False

T

N

F

F

F



3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the fact that at least one variable per clause must be chosen.

Quick Aside:

Notice that in some cases, we can color the output to the neutral color. We 

will handle this issue in a moment.

But, it is still the case that we CAN color the output True if and only if one of 

the input nodes is colored True.

True / False

F

T

N

T

F



3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦) The graph we construct needs to:

- Model the fact that at least one variable per clause must be chosen.

T

N

F

Corollary:

We can combine two of these widgets to produce an OR 

gate across three variables. The output is colorable as TRUE 

if and only if one of the three inputs is colored TRUE

F

F

Example 1: False / False / True

N

F

T

T

In 

1

In 

2

out

In 

3

T

N

F

F

F

Example 2: False / False / False

N

T

F

F



3𝑆𝐴𝑇 ≤𝑝 3𝐶

𝜃 = 𝑢 ∨ ¬𝑣 ∨ 𝑤 ∧ (𝑣 ∨ 𝑥 ∨ ¬𝑦)

F

N

T

Clause 1

F

N

T

F

N

T

Clause 2

F

N

T

T F

N

𝑢 ¬𝑢

𝑣 ¬𝑣

𝑤 ¬𝑤

𝑥 ¬𝑥

𝑦 ¬𝑦

Notice that the outputs of the gates are 

connected to the False and Neutral terminals. 

This is because we NEED the output of each 

clause to be colored True!



(VERY INFORMAL) PROOF OF REDUCTION

114

• Sat() → G is 3-Colorable

• Assume  is satisfiable

• 3 colors (true, false, base)

• Color B,T,F with these colors

• Color variable nodes with T and F 

depending on their satisfying values for 

• Or gates always colorable so that they 

represent correct OR (output is true iff one 

or more inputs true)

• Thus G is 3-Colorable

• G is 3-Colorable → Sat()

• Assume G is 3-Colorable

• Color the graph

• Let the colors of the B,T,F nodes represent 

base, true, and false respectively.

• Re-arrange OR gate colors slightly if 

necessary so output is always T or F

• Let variable assignments be the color they 

were given

• These assignments satisfy 



CONCLUSIONS / OTHER COMPLEXITY CLASSES



A COUPLE COMPLEXITY CLASSES WE WON’T SEE:

• EXPTIME

• Deterministic exponential time

• NEXPTIME

• Non-Deterministic exponential time

• PSPACE

• Deterministic Polynomial Space

• NPSPACE

• Non-Deterministic Polynomial Space

• EXPSPACE

• Deterministic Exponential Space

• NEXPSPACE

• Non-Deterministic Exponential Space

PSPACE = NPSPACE and EXPSPACE = NEXPSPACE

(WOAH! That’s pretty cool!)



COMPLEXITY CLASS DIAGRAM



CONCLUSIONS!

1. Problem types (function, decision, verification), runtimes of DTMs and NTMs, 

relationships between DTM and NTM runtimes for types of problems.

2. The basic complexity classes (P, NP, NP-Hard, NPC) and how they relate to 

one another.

3. What a reduction is and how it is used to compare the difficulty of two 

different problems.

In this module, we learned:

4. How to prove that a problem is NP-Complete.



IF WE HAVE TIME

https://www.youtube.com/watch?v=oS8m9fSk-Wk

https://www.youtube.com/watch?v=oS8m9fSk-Wk
https://www.youtube.com/watch?v=oS8m9fSk-Wk
https://www.youtube.com/watch?v=oS8m9fSk-Wk
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