
TURING MACHINES
DISCRETE MATHEMATICS AND THEORY 2

MARK FLORYAN

GOALS!

1. Our next computational model: The Turing Machine!

2. Analysis of different variations of Turing Machines (including non-

deterministic Turing Machines).

3. Formalizing the concept of decidability versus recognizability, algorithms,

and an introduction to computability theory.

PART 1: REMINDER OF WHERE WE ARE / CHOMSKY
HIERARCHY

OVERVIEW OF THEORY OF COMPUTATION

Computing Machine /

Program / Algorithm
Input Output

Defining Computation

Computational Models

Circuits Finite

Automata

Pushdown

Automata

Turing

Machine

RAM

Model
< < < =

Computational Complexity

Decidability P, NP, NP-Hard P-Space, Co-NP, etc

WHAT IS A TURING MACHINE?

A Turing Machine (TM), sometimes called a Deterministic Turing Machine (DTM) is

a finite state machine that can read/write from an infinite tape (memory)

Some other features of the Turing Machine:

1. A TM can both read and write to/from the tape

2. The TM contains a head that can move left and right along the tape

3. The tape is infinite

4. The special states for accepting / rejecting take effect immediately

INTRODUCING THE TURING MACHINE

WHAT IS A TURING MACHINE?

This tape contains the input

when execution begins.

This control is a traditional DFA,

except the accept/reject states

take effect immediately.

The arrow here represents the head of the machine.

It can move left and right and also read/write the

symbol at that position.

EXAMPLE TURING MACHINE

Let’s design a Turing Machine to recognize the following language:

𝐵 = 𝑤#𝑤 𝑤 ∈ 0,1 ∗}

Any ideas on how we might do this?

Remember that the proposed string is written on the tape at the beginning of

execution, and the head of the tape begins at index 0

EXAMPLE TURING MACHINE

Machine 𝑀1 will do the following:

1. Zig-zag across the tape to corresponding

positions on either side of the # symbol to

check whether these positions contain the

same symbol. If they do not or no # is

found, reject.

2. When all symbols to the left of the # have

been crossed off, check for any remaining

symbols to the right of the #. If any exists,

reject otherwise accept.

Let’s design a Turing Machine to recognize the following language:

𝐵 = 𝑤#𝑤 𝑤 ∈ 0,1 ∗}

FORMAL DEFINITION OF TM

A Turing Machine is a 7-tuple, 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐, 𝑞𝑟𝑒𝑗 , where

𝑄, Σ, Γ are all finite sets and:

1. 𝑄 is the set of states

2. Σ is the input alphabet not containing the blank symbol ⊔

3. Γ is the tape alphabet, where ⊔∈ Γ and Σ ⊂ Γ

4. 𝛿: 𝑄 × Γ → 𝑄 × Γ × {𝐿, 𝑅, 𝑆} is the transition function

5. 𝑞0 ∈ 𝑄 is the start state

6. 𝑞𝑎𝑐𝑐 ∈ 𝑄 is the accept state

7. 𝑞𝑟𝑒𝑗 ∈ 𝑄 is the reject state, where 𝑞𝑟𝑒𝑗 ≠ 𝑞𝑎𝑐𝑐

Blank symbol often used

to mark special cases,

end of input, etc.

L, R, S here represent

moving the head left or

right or staying still

Note that TMs have one

accept and one reject

state, and they cannot

be equal.

TRANSITION FUNCTION

𝛿: 𝑄 × Γ → 𝑄 × Γ × {𝐿, 𝑅, 𝑆} is the transition function

Where the TM transitions depends on this

input. What state the machine is in and what

symbol is currently on the tape at the head’s

current position.

Machine will enter a new state (optional)

Machine will write something to the tape (optional)

Head will move Left or Right (or S for staying put)

EXAMPLE TURING MACHINE

Let’s design a Turing Machine to recognize the following language:

𝐵 = 𝑤#𝑤 𝑤 ∈ 0,1 ∗}

Find

#

Find

0

REJ

ACC

Mv

Rt
𝑥 → 𝜖, 𝑅

0 → 𝑥, 𝑅

1 → 𝑥, 𝑅

0,1 → 𝜖, 𝑅

→ 𝜖, 𝑅

x → 𝜖, 𝑅

1,⊔→ 𝜖, 𝑆

Reset

to #

0 → 𝑥, 𝐿

Reset

to Lft

0,1, x → 𝜖, 𝐿

→ 𝜖, 𝐿

0,1 → 𝜖, 𝐿

x → 𝜖, 𝑆

Find

#

Find

1

→ 𝜖, 𝑅

x → 𝜖, 𝑅

0,⊔→ 𝜖, 𝑆
0,1 → 𝜖, 𝑅

→ 𝜖, 𝑅

1 → 𝑥, 𝐿

Chk

Rt.

x → 𝜖, 𝑅

⊔→ 𝜖, 𝑅

0,1 → 𝜖, 𝑆

CONFIGURATIONS OF A TM

A configuration of a Turing Machine is the complete state the machine is in at any point

during execution. This includes the state, the contents of the tape, and the position of

the head.

This machine is in state q7, and the contents of the tape

/ position of the head can be seen in the diagram.

A configuration of a TM can be

represented succinctly as a string:

1011𝑞701111

RECOGNIZING VS DECIDING

When a Turing Machine executes, there are three possible outcomes

Input written to

TM tape

Some Turing Machine

Executes on input / tape

Accept: Input on tape is in language

Reject: Input on tape is NOT in language

Loop: TM runs forever, never reaching accept or reject

state

RECOGNIZING VS DECIDING

A Turing Machine decides a language (is a decider) if it never loops and always correctly accepts or rejects strings

for the given language.

Some Turing Machine

Executes on input / tape

Accept: Input on tape is in language

Reject: Input on tape is NOT in language

Loop: TM runs forever, never reaching accept or reject

state

A TM decides the language if it always

halts and outputs one of these two

possibilities. The language of this TM is

said to be a decidable language.

RECOGNIZING VS DECIDING

A Turing Machine recognizes a language (is a recognizer) if it always accepts strings that are in the language, but

might reject or might loop forever on strings that are NOT in the language.

Some Turing Machine

Executes on input / tape

Accept: Input on tape is in language

Reject: Input on tape is NOT in language

Loop: TM runs forever, never reaching accept or reject

state

A recognizer will always accept when the

string IS in the language

However, when the input string is NOT in

the language, a recognizer might reject or

it might just loop forever.

Languages that can be recognized are called Turing-Recognizable

EXAMPLES: DESIGNING TURING MACHINES

PRACTICE 1: DESIGN A TM

Construct a Turing Machine that decides the following language:

𝐴 = 02𝑛
 𝑛 ≥ 0}

PRACTICE 1: DESIGN A TM

Construct a Turing Machine that decides the following language:

𝐴 = 02𝑛
 𝑛 ≥ 0}

Overall Approach, on input w:

1. Sweep left to right across the tape, crossing off every other 0.

2. If in stage 1 the tape contained a single 0, accept

3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, reject

4. Return the head to the left end of the tape

5. Go to stage 1

PRACTICE 1: DESIGN A TM

PRACTICE 1: DESIGN A TM

Q1 represents start state. We mark first 0 with blank

Q2 represents we have seen one 0

Q3 represents seen one 0 or even number of 0s

Q4 represents seen an odd number of 0s

Q5 represents moving head back to the front

EXAMPLE 2!!

Construct a Turing Machine that decides the following language:

𝐶 = 𝑎𝑖𝑏𝑗𝑐𝑘 𝑖 × 𝑗 = 𝑘 ∧ 𝑖, 𝑗, 𝑘 ≥ 1}

EXAMPLE 2!!

Construct a Turing Machine that decides the following language:

𝐶 = 𝑎𝑖𝑏𝑗𝑐𝑘 𝑖 × 𝑗 = 𝑘 ∧ 𝑖, 𝑗, 𝑘 ≥ 1}

Overall Idea:

On input String w:

1. Scan the tape to make sure the input is in the form 𝑎+𝑏+𝑐+, if not reject.

2. Return the head to the left end of the tape.

3. Cross off the first a and scan to the right until first b is found. Shuttle between crossing off

one b and scanning right to cross off one c until all the b’s are gone. If all c’s are crossed

out, and b’s remain, reject.

4. Restore the crossed off b’s and repeat stage 3 if there is another a. If all a’s are crossed

off, determine whether all c’s are crossed off. If yes, accept, otherwise reject.

EXAMPLE 3!!

Element Distinctness Problem: Can we decide the language:

𝐸 = #𝑥1#𝑥2 # … #𝑥𝑛 𝑒𝑎𝑐ℎ 𝑥𝑖 ∈ 0,1 ∗ 𝑎𝑛𝑑 𝑥𝑖 ≠ 𝑥𝑗 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ≠ 𝑗}

EXAMPLE 3!!

Element Distinctness Problem: Can we decide the language:

𝐸 = #𝑥1#𝑥2 # … #𝑥𝑛 𝑒𝑎𝑐ℎ 𝑥𝑖 ∈ 0,1 ∗ 𝑎𝑛𝑑 𝑥𝑖 ≠ 𝑥𝑗 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ≠ 𝑗}

Key ideas we will need for this one:

1. The tape can be marked to keep track of loops (which characters are

being compared with which characters). This is why the # symbols are

useful.

2. How do we actually compare the characters? It is annoying but can be

done with many states. How do you think that would work?

TRACKING LOOPS!!

How do we keep track of loops with a Turing Machine?

First, introduce new tape symbols that represent the loop beginning and end. Here we will

use (and). Remember that goal is to compare every pair of characters.

f (a # c # e # s) l # k ⊔ ….

When starting an outer loop, mark the

relevant part of the tape with open paren.

Mark closing paren to mark outer loop

location if necessary.

COMPARING CHARACTERS

How hard is it to compare characters?

This machine will have to check characters for equivalence. How do we do this? Let’s

suppose that 𝛴 = 𝑎, 𝑏 and tape is pointing at left side of 𝑐1#𝑐2

a

a’

reject

b

b’

comp
a → R

b → R

→ R

b → L a → L

Back to some other computation

→ R

b → R
a → R

EXAMPLE 3!!

Element Distinctness Problem: Can we decide the language:

𝐸 = #𝑥1#𝑥2 # … #𝑥𝑛 𝑒𝑎𝑐ℎ 𝑥𝑖 ∈ Σ 𝑎𝑛𝑑 𝑥𝑖 ≠ 𝑥𝑗 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ≠ 𝑗}

On input w:

1. Place a mark on top of the leftmost tape symbol. If that symbol was blank, accept. If that

symbol was #, continue with the next stage. Otherwise, reject.

2. Scan right to the next # and place a second mark on top of it. If no # is encountered

before a blank symbol, only 𝑥1 was present, so accept

3. By zig-zagging, compare the two strings to the inside of the marked #s. If equal, reject.

4. Move the rightmost of the two marks to the next # symbol to the right. If no # symbol is

encountered before a blank, move the leftmost mark to the next # to its right and the

rightmost mark to the # after that. This time, if no # is available for the rightmost mark, all

the strings have been compared, so accept.

5. Loop: Go to step 3.

TURING MACHINE VARIANTS

MOTIVATING QUESTION

Can we have different features of TMs that increase / or don’t the recognizing

power of the traditional TM?

Some we will see:

 Turing machines with multiple tapes

 Non-deterministic Turing Machines

MULTITAPE TURING MACHINE

A Multitape Turing Machine is like an ordinary TM but it has several tapes

instead of one. Each tape has an independent head that can be moved.

The transition function is updated to:

𝛿: 𝑄 × Γ𝑘

→ 𝑄 × Γ𝑘 × 𝐿, 𝑅, 𝑆 𝑘

Here, k is the number of tapes. So each tape

can be read at each step of computation, each

head can write / move as well.

MULTITAPE TURING MACHINE

Theorem: Every Multitape Turing Machine has an equivalent single-tape Turing

machine.

MULTITAPE TURING MACHINE

Theorem: Every Multitape Turing Machine has an equivalent single-tape Turing

machine.

Goal: Given an arbitrary MTTM, convert it into an equivalent TM

**Need to argue that S simulates M’s computation exactly in all scenarios

MULTITAPE TURING MACHINE

Two major issues we need to overcome for this proof:

Issue 1: How to simulate

multiple tapes / heads with

only one tape / head?

Issue 2: How to handle

space constraints fitting k

tapes on just 1?

For issue 1, we make special versions of

each tape symbol that represent a “virtual

head” being positioned at that location.

For issue 2, we separate each tape by a special #

symbol and create a subroutine that shifts the

contents of everything to the right down when we

need more space on any individual tape.

MULTITAPE TURING MACHINE

Summary of how to simulate M with S

S = on input 𝑊 = 𝑤1𝑤2𝑤3 … 𝑤𝑛:

1. First S puts its tape into the format representing all k tapes of M, separated by the # symbol. The

special “virtual head” symbol is used at the left most symbol on each of the k “sections” of the

tape.

2. To simulate a single step, S first steps across the whole tape to see which symbols are under each

of the virtual heads (reading each of the tapes), then S simulates writing and updating the “head”

of the tape for each individual section according to Ms original transition function.

3. If at any point S runs out of space on any tape, we run a subroutine that shifts everything on the

tape over by one, creating one more cell of space on this particular tape.

MULTITAPE TURING MACHINE

Theorem: Every Multitape Turing Machine has an equivalent single-tape Turing

machine.

Corrollary: A language is Turing-recognizable iff some Multitape Turing Machine

recognizes it.

Proof:

Direction 1: A Turing recognizable language is recognized by some Turing Machine, and

any TM is also a valid multitape TM.

Direction 2: If a multitape TM recognizes a language, then it can be converted into an

equivalent single tape TM as described earlier.

NON-DETERMINISTIC TURING MACHINES (NTM)

A non-deterministic Turing Machine (NTM) can branch into many possibilities.

Transition function has form: 𝛿: 𝑄 × Γ → 𝒫 𝑄 × Γ × 𝐿, 𝑅, 𝑆

The tape, state, etc. are all branched to an

independent machine. No resources are shared across

the branches.

NTM VERSUS DTM

Theorem: Every NTM has an equivalent DTM

NTM VERSUS DTM

Theorem: Every NTM has an equivalent DTM

Idea: Machine N has

branching computations. Let’s

search this computation tree in

a breadth-first manner.

N

(NTM)

D

(DTM)

Using D, simulate N’s

execution exactly

Issues:

How to switch between branches?

Why BFS instead of DFS?

Keeping track of tree location?

NTM VERSUS DTM

Theorem: Every NTM has an equivalent DTM

Proof Idea: Simulate the NTM with a DTM (multi-tape) Tape 1 contains the input

and will never be altered.

Tape 2 contains N’s tape at that particular

branch of execution as we simulate

Tape 3 is the address tape, it tells us which branch of computation to

simulate at each step (more about this on the next slide).

NTM VERSUS DTM

Theorem: Every NTM has an equivalent DTM

Let’s look at Tape 3 for a moment

“”

1 2 3

11 12 13 21 31 32 33

Tape 3 tells you which direction down tree to go each

time you make a step in your computation. Each cell is

at most b, where b is the max number of branches

possible for that machine.

For example, if tape 3 contains ”13”, we will simulate the

highlighted (white) path above and terminate (even if there is

more computation possible).

Tape 3 will try “”, 1, 2, 3, 11, 12, 13, 21, 31, 32, 33, ….

NTM VERSUS DTM

Theorem: Every NTM has an equivalent DTM

Given Machine N, Machine D Proceeds As Follows:

1. Tape 1 contains the input, tapes 2 and 3 are empty.

2. Copy tape 1 onto tape 2 to initialize the simulation.

3. Use tape 2 to simulate N on input. At every stage of computation, look at tape 3 to determine which non-deterministic branch to follow

(which next state out of many choices to take). If we reach an accept state, then accept! If we run out of branches to follow on tape 3, or

we reach a reject state, or this configuration is invalid (the choice on tape 3 is not a valid choice), then abort this branch and go to step 4.

4. Replace the string on tape 3 with the next string in the string ordering (e.g., “11” might become “12”). Simulate the next branch by going

to step 2.

5. This machine rejects if all branches are enumerated and no accept state is found (note the machine could loop forever).

NTM VERSUS DTM

Theorem: A language is decidable if and only if some non-deterministic Turing

machine decides it (same holds for recognizing).

This follows from our previous proof. Any NTM can be simulated with a DTM so

these machines are equivalent for deciding languages!

LAST CONCLUSION

Any computational model satisfying reasonable requirements to that of a TM is

equivalent in power to a TM

Most notably:

1. Access to unlimited memory

2. The ability to perform a finite amount of work in a single step

THE DEFINITION OF AN ALGORITHM

SHORT DISCUSSION

What is an Algorithm? Does seeing the Turing Machine change your perspective

on this at all?

**It was not until the 20th century that the notion of an algorithm was defined precisely.

HILBERT’S PROBLEMS

In 1900, Hilbert gave a now famous

address at the International

Congress of Mathematicians in

Paris. He identified 23

mathematical problems and posed

them as a challenge for the coming

century. Hilbert’s 10th problem

concerned algorithms.

David Hilbert: German Mathematician

What was Hilbert’s 10th problem: Devise an algorithm that tests whether a polynomial has an

integral root (he did not use the word “algorithm”).

HILBERT’S PROBLEMS

David Hilbert: German Mathematician Hilbert used the word “devise”,

implying that some algorithm /

process must exist (he was

wrong about that part).

The 10th problem is unsolvable, but mathematicians in

1900 only had an intuitive understanding of algorithm.

The world needed a formal definition

of an “algorithm” in order to prove

that this particular problem was

unsolvable…

THE CHURCH-TURING THESIS

The Church-Turing Thesis (1936): Lambda-Calculus (Alonzo Church) and Turing Machines

(Alan Turing) provide the mechanism for formally defining an algorithm.

So…an algorithm is any process that can be programmed on a Turing Machine

in order to recognize or decide some function (or language).

FINDING POLYNOMIAL ROOTS IS RECOGNIZABLE

Problem: Can you recognize (not decide) the following language:

𝐷1 = 𝑝 𝑝 𝑖𝑠 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑣𝑒𝑟 𝑥 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑟𝑜𝑜𝑡}

Note that the polynomial

is guaranteed to be over

just one variable.Also recall that this language is recognizable if

you will can find the root if it exists, but you can

loop forever if it does not exist.

FINDING POLYNOMIAL ROOTS IS RECOGNIZABLE

Problem: Can you recognize (not decide) the following language:

𝐷1 = 𝑝 𝑝 𝑖𝑠 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑣𝑒𝑟 𝑥 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑟𝑜𝑜𝑡}

Solution:

On input <p>:

1. Evaluate p with x set successfully to the values 0, 1, -1, 2, -2, 3, -3, …

2. Accept if at any point the polynomial evaluates to 0

Notice that this solution loops forever anytime the answer

should be “reject”. It is possible to turn this into a decider (see

book for details)

FINDING POLYNOMIAL ROOTS IS RECOGNIZABLE

Problem: Can you recognize (not decide) the following language:

𝐷1 = 𝑝 𝑝 𝑖𝑠 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑣𝑒𝑟 {𝑥, 𝑦, 𝑧 … } 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑟𝑜𝑜𝑡}

This problem is undecidable, meaning there does not exist an algorithm

(Turing Machine) that decides it. Now that we understand Turing Machines,

we can begin to formulate how some problems cannot be decided.

WHAT DID WE LEARN IN THIS DECK

1. Definition of Turing Machines, both deterministic and non-deterministic along

with other variants

2. Simple design of algorithms using Turing Machines

3. Definitions of recognizable vs decidable languages

4. Practice with designing Turing Machines for simple problems.

	Slide 1: Turing Machines
	Slide 2: Goals!
	Slide 3: Part 1: Reminder of where we are / Chomsky Hierarchy
	Slide 4: Overview of Theory of Computation
	Slide 5: What is a Turing Machine?
	Slide 6: Introducing The Turing Machine
	Slide 7: What is a Turing Machine?
	Slide 8: Example Turing Machine
	Slide 9: Example Turing Machine
	Slide 10: Formal Definition of TM
	Slide 11: Transition Function
	Slide 12: Example Turing Machine
	Slide 13: Configurations of A TM
	Slide 14: Recognizing VS Deciding
	Slide 15: Recognizing VS Deciding
	Slide 16: Recognizing VS Deciding
	Slide 17: Examples: Designing Turing Machines
	Slide 18: Practice 1: Design a TM
	Slide 19: Practice 1: Design a TM
	Slide 20: Practice 1: Design a TM
	Slide 21: Practice 1: Design a TM
	Slide 22: Example 2!!
	Slide 23: Example 2!!
	Slide 24: Example 3!!
	Slide 25: Example 3!!
	Slide 26: tracking loops!!
	Slide 27: Comparing Characters
	Slide 28: Example 3!!
	Slide 29: Turing Machine Variants
	Slide 30: Motivating Question
	Slide 31: MultiTape Turing Machine
	Slide 32: MultiTape Turing Machine
	Slide 33: MultiTape Turing Machine
	Slide 34: MultiTape Turing Machine
	Slide 35: MultiTape Turing Machine
	Slide 36: MultiTape Turing Machine
	Slide 37: Non-Deterministic Turing Machines (NTM)
	Slide 38: NTM versus DTM
	Slide 39: NTM versus DTM
	Slide 40: NTM versus DTM
	Slide 41: NTM versus DTM
	Slide 42: NTM versus DTM
	Slide 43: NTM versus DTM
	Slide 44: Last Conclusion
	Slide 45: The Definition of An Algorithm
	Slide 46: Short Discussion
	Slide 47: Hilbert’s Problems
	Slide 48: Hilbert’s Problems
	Slide 49: The Church-Turing Thesis
	Slide 50: Finding Polynomial Roots is Recognizable
	Slide 51: Finding Polynomial Roots is Recognizable
	Slide 52: Finding Polynomial Roots is Recognizable
	Slide 53: What did we learn in this deck

