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GOALS!

1. Let’s revisit the concept of decidable languages, and find some.

2. Let’s find some examples of undecidable languages, and even some examples 

of unrecognizable languages.

3. Let’s introduce the concept of reductions, which can expedite / simplify proofs 

that certain problems are undecidable or unrecognizable.



THE BIG PICTURE!



PART 1: DECIDABLE LANGUAGES



DECIDABLE LANGUAGES

Recall that a decidable language is a language for which a Turing Machine exists 

that computes it and always halts.

Let’s look at a few more decidable languages and eventually start discovering 

some undecidable languages.



DECIDABLE LANGUAGES

Example: 𝐴𝐷𝐹𝐴 = 𝐵, 𝑤  𝐵 𝑖𝑠 𝑎 𝐷𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤}

Can you describe a Turing Machine that decides this language?



DECIDABLE LANGUAGES

Example: 𝐴𝐷𝐹𝐴 = 𝐵, 𝑤  𝐵 𝑖𝑠 𝑎 𝐷𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤}

M = “On input <B,w>:

1. Simulate B on input w

2. If B ends in accept state, accept. Otherwise, reject.”

w is finite, B is also guaranteed to halt. So 

the simulation must be possible and it must 

halt.

Let’s briefly discuss some of 

the implementation details 

involved in this.



DECIDABLE LANGUAGES

Example: 𝐴𝑁𝐹𝐴 = 𝐵, 𝑤  𝐵 𝑖𝑠 𝑎𝑛 𝑁𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤}

How about this one? How would you design the machine this time?



DECIDABLE LANGUAGES

Example: 𝐴𝑁𝐹𝐴 = 𝐵, 𝑤  𝐵 𝑖𝑠 𝑎𝑛 𝑁𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤}

N = “On input <B,w>:

1. Convert NFA B into DFA C using procedure given previously.

2. Run Turing Machine M from previous slide on <C,w>

3. If M accepts, then accept. Otherwise, reject.”



MORE DECIDABLE LANGUAGES

𝐸𝐷𝐹𝐴 = 𝐴 𝐴 𝑖𝑠 𝑎 𝐷𝐹𝐴 𝑎𝑛𝑑 𝐿 𝐴 = ∅}

All of the following languages are similarly decidable:

Is language of the DFA empty?

𝐴𝑅𝐸𝑋 = 𝑅, 𝑤 𝑅 𝑖𝑠 𝑎 𝑟𝑒𝑔. 𝑒𝑥𝑝. 𝑡ℎ𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝑤} Does a given expression generate this string?

𝐸𝑄𝐷𝐹𝐴 = 𝐴, 𝐵 𝐴, 𝐵 𝑎𝑟𝑒 𝐷𝐹𝐴 ∧ 𝐿 𝐴 = 𝐿(𝐵)} Do two DFAs recognize the same language?

…and analogous languages for Context-Free Grammars (CFGs)



PART 2: UNDECIDABLE LANGUAGES



DO UNDECIDABLE LANGUAGES EXIST?

Are there problems that are unsolvable by computers (Turing Machines)? 



DO UNDECIDABLE LANGUAGES EXIST?

Are there problems that are unsolvable by computers (Turing Machines)? 

Yes! In fact, many simple and common 

problems are undecidable.

Many of these problems are 

recognizable, but not decidable.

This has profound philosophical 

implications in Computer Science. 

Some things are fundamental 

limitations that computers cannot 

overcome.



DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language 𝐴𝑇𝑀 = 𝑀, 𝑤  𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤} is 

undecidable.

This language is Turing-Recognizable though. Here is how:

U = “On input <M,w>:

1. Simulate M on input w

2. If M ever accepts, then accept.

3. If M ever reject, then reject.

Note that if M loops 

forever, then so will U



DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language 𝐴𝑇𝑀 = 𝑀, 𝑤  𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤} is 

undecidable.

Okay, let’s prove it. 

Intuitively, what is the 

potential issue here?

This is one of the most famous 

proofs in Computer Science



DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language 𝐴𝑇𝑀 = 𝑀, 𝑤  𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤} is 

undecidable.

Step 1: For the sake of contradiction, 

assume 𝐴𝑇𝑀 is decidable If 𝐴𝑇𝑀 is decidable, then 

there must exist a machine 

that decides it. Let’s call that 

machine H



DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language 𝐴𝑇𝑀 = 𝑀, 𝑤  𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤} is 

undecidable.

Step 2: Construct a new machine D that uses 

H as a subroutine. D
Input <M>

H(<M, M>)

accept

reject accept

reject



SOME COMMENTS ON MACHINE D

D

Input <M>

H(<M, M>)

accept

reject accept

reject

What does it mean to run a 

machine with itself as input? 

Is this even possible?

Notice that we flip the 

output here. This will be 

important for creating the 

contradiction



SOME COMMENTS ON MACHINE D

D

Input <D>

H(<D, D>)

accept

reject accept

reject

Step 3: Run the machine D with itself (D) as input. What happens?

Notice that D is running with 

itself as input in two places, 

once overall (green square) 

and once simulated inside of H

Which means these outputs should 

match because they are the output of 

the exact same thing (D running on D 

as input)



SOME COMMENTS ON MACHINE D

D

Input <D>

H(<D, D>)

accept

reject accept

reject

Step 3: Run the machine D with itself (D) as input. What happens?

Q.E.D: This is a contradiction because if H exists (𝐴𝑇𝑀 is decidable), then there is at least 

one set of inputs where H produces the wrong answer (well, it cannot produce the right 

answer by definition).



DO UNDECIDABLE LANGUAGES EXIST?

This is really a proof by diagonalization



DO UNDECIDABLE LANGUAGES EXIST?

This is really a proof by diagonalization

Each entry is a 

machine’s output when 

another machine’s 

description is given as 

input

D is defined to be the machine that has the opposite output 

from the corresponding diagonal (see green outlines)

But this entry has to 

be both accept and 

reject at the same 

time, leading to the 

contradiction



DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language 𝐴𝑇𝑀 = 𝑀, 𝑤  𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤} is 

undecidable.

Thus it is proven, and there is at least one undecidable language



PART 3: NON-RECOGNIZABLE LANGUAGES?



NON-TURING RECOGNIZABILITY?

Is it possible to find languages that are NOT Turing recognizable? 

Yes, but we will need to discuss 

the idea of the complement of 

a language first.



DEFINITION: COMPLEMENT OF A LANGUAGE

The complement of a language ℒ is the set of strings that do NOT belong to ℒ. 

In other words, ℒ(𝐴) = 𝑥 ∈ 𝐴 𝑥 ∉ ℒ(𝐴)}

Some Examples:

ℒ(𝐴) ℒ(𝐴)

Strings containing less than ten 1’s Strings containing ten or more 1’s

DFA <D> accepts string <w> DFA <D> rejects string <w>

TM <M> halts on input <w> TM <M> loops forever on input <w>



MORE ON COMPLEMENTS

Some Turing Machine

Executes on input / tape

Accept: Input on tape is in language

Reject: Input on tape is NOT in language

Loop: TM runs forever, never reaching accept or reject 

state

In language above, Accepts (Yes) is easy because if 

machine halts we are sure it is a Yes

However, detecting the Looping Forever 

case is difficult to ascertain. Is the machine 

just taking a long time?

TM <M> halts on input <w>



MORE ON COMPLEMENTS

Some Turing Machine

Executes on input / tape

Accept: Input in language

Reject: Input Not in language

Loop: TM runs forever

Now, Rejecting (No) is easy. If we 

halt then we output Reject (No).

Now, distinguishing between Halt (Yes) 

and Looping Forever is hard. Is the 

machine just taking a long time and we 

should really reject or is it actually 

looping forever?

TM <M> loops forever on input <w>



CO-TURING RECOGNIZABLE

A language ℒ is co-Turing recognizable iff the complement ҧℒ is Turing 

recognizable.

ℒ(𝐴)

TM <M> loops 

forever on input <w>

ℒ(𝐴)

TM <M> halts on 

input <w>

Is recognizable 

as shown earlier



ANOTHER WAY TO DEFINE DECIDABILITY

Theorem: A language is decidable if and only if it is Turing-recognizable and it 

is co-Turing-recognizable

How to prove this?

Direction 1: If language is decidable → It is T-Rec. and Co-T-Rec.

Direction 2: If language is T-Rec. and Co-T-Rec. → It is decidable



PROVING THE THEOREM

Theorem: A language is decidable if and only if it is Turing-recognizable and it 

is co-Turing-recognizable

Direction 1: If language is decidable → It is T-Rec. and Co-T-Rec.

Assume language 

A is decidable

Thus, a machine that 

decides A (let’s call it 

D) must exist

D
Input w

Recognizer
If D accepts, accept

If D rejects, reject

D
Input w

Co-Recognizer

If D accepts, reject

If D rejects, accept



PROVING THE THEOREM

Theorem: A language is decidable if and only if it is Turing-recognizable and it 

is co-Turing-recognizable

Direction 2: If language is T-Rec. and Co-T-Rec. → It is decidable

Assume A 

is TR and 

Co-TR

Thus, machines 

that recognize 

each exists

R
Recognizer

Use these to construct a decider 

for A

CR

Co-

Recognizer

Non-

deterministical

ly run R and 

CR in parallel

D

Input w

R
Recognizer

CR

Co-

Recognizer

If R accepts, 

accept

If CR accepts, 

reject



UNRECOGNIZABILITY!

Theorem: 𝑨𝑻𝑴 is unrecognizable. 

Finally ready to find an unrecognizable language

Recall that 𝐴𝑇𝑀 = 𝑀, 𝑤  𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤}, thus:

𝐴𝑇𝑀 = 𝑀, 𝑤  𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑟𝑒𝑗𝑒𝑐𝑡𝑠 𝑤 𝑜𝑟 𝑙𝑜𝑜𝑝𝑠 𝑓𝑜𝑟𝑒𝑣𝑒𝑟} 



UNRECOGNIZABILITY!

Theorem: 𝑨𝑻𝑴 is unrecognizable. 

Finally ready to find an unrecognizable language

Can you prove it?

Assume for sake of contradiction that 𝐴𝑇𝑀 is recognizable

This means that 𝐴𝑇𝑀 (assumed) and 𝐴𝑇𝑀 (proven earlier) are both recognizable

Thus, 𝐴𝑇𝑀 is decidable by earlier theorem (both it and complement are recognizable)

Contradiction! 𝑨𝑻𝑴 is undecidable as proven earlier.



PART 4: INTRODUCTION TO REDUCIBILITY



WHAT IS REDUCIBILITY?

Reduction: A process through which problems are related to one another through 

comparison. This comparison establishes that one problem can be solved if the other is.

Problem A: Enter Japan during Covid

Get Covid Visa Exception

Book ticket(s)

Travel on plane, etc.

Go visit Obaachan

These are all easy!

This one was hard!



WHAT IS REDUCIBILITY?

Reduction: A process through which problems are related to one another through 

comparison. This comparison establishes that one problem can be solved if the other is.

Problem A: Enter Japan during Covid

Get Covid Visa Exception

Book ticket(s)

Travel on plane, etc.

Go visit Obaachan

Problem B: Get Covid Visa Exception.

Retrieve Marriage Paperwork

(Japan)

Acquire invite from citizen

Bring paperwork to embassy in DC

…

Reduces to

Now this one 

is hard!



WHAT IS REDUCIBILITY?

Problem A: Enter Japan during Covid

Get Covid Visa Exception

Book ticket(s)

Travel on plane, etc.

Go visit Obaachan

Problem B: Get Covid Visa Exception.

Retrieve Marriage Paperwork

(Japan)

Acquire invite from citizen

Bring paperwork to embassy in DC

…

Reduces to

Question: What if it is a FACT that “Problem A: Enter Japan During Covid” is impossible to 

accomplish? What can you then conclude is also impossible? Why?



REDUCTION PROCESS

Reduction: A reduction exists between problems A and B if a solution to B can 

be used to develop a solution for A.

Problem A

Solve problem B

Do easy work

Do more easy work

…

Problem B

Solve problem B
Reduces to



THE HALTING PROBLEM

The Halting Problem: Given a Turing machine, does it halt:

𝐻𝑎𝑙𝑡𝑇𝑀 = 𝑀, 𝑤  𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑤}

𝑨𝑻𝑴(𝑴, 𝒘)

Reject if M loops forever

Reject if M rejects

Accept if M accepts
𝑯𝒂𝒍𝒕𝑻𝑴(𝑴, 𝒘)

Does M halt on w?
Reduces to

If  I can solve the problem in 

green, then I can solve both 

of these problems!!



THE HALTING PROBLEM

𝑨𝑻𝑴(𝑴, 𝒘)

Reject if M loops forever

Reject if M rejects

Accept if M accepts
𝑯𝒂𝒍𝒕𝑻𝑴(𝑴, 𝒘)

Does M halt on w?
Reduces to

Assume for the sake of 

contradiction, that 𝐻𝑎𝑙𝑡𝑇𝑀 is 

decidable. Thus, some machine R 

exists that decides it.

Then, this machine would decide Atm, but that contradicts our theorem 

that ATM is undecidable. Thus, halt is also undecidable

Machine M, on input w:

  - Invoke R on (M,w) to see if  M halts. If not, reject.

  - Else simulate M on input w:

    - If  M accepts, then accept.

    - If  M rejects, then reject.



THE HALTING PROBLEM

Theorem: 𝐻𝑎𝑙𝑡𝑇𝑀 is undecidable

Proof was simplified by using a 

proof by contradiction via a valid 

reduction from 𝐴𝑇𝑀



TM EMPTINESS TESTING

Emptiness Test: Can you use a similar reduction to show 𝐸𝑇𝑀 is undecidable?

𝐸𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅ }

In other words, test 

whether the given 

machine never accepts



TM EMPTINESS TESTING

Emptiness Test: Can you use a similar reduction to show 𝐸𝑇𝑀 is undecidable?

𝐸𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅ }

Step 1: Modify M:

𝑴𝟏 = “on input x:

    𝒊𝒇 𝒙 ≠ 𝒘, reject

    otherwise, run M on w, accept iff  M does“

*Notice that w is 

hardcoded into 

description of 𝑀1

Why is this 

helpful?

Step 0: Assume, for sake of contradiction, a machine R decides 𝐸𝑇𝑀



TM EMPTINESS TESTING

Step 1: Modify M:

𝑴𝟏 = “on input x:

    𝒊𝒇 𝒙 ≠ 𝒘, reject

    otherwise, run M on w, accept iff  M does“

Step 2: Solve Atm

𝑺 = “on input (M,w):

    Construct 𝑴𝟏 as described

    Run R on input 𝑴𝟏

    Flip the output of  R“

Emptiness Test: Can you use a similar reduction to show 𝐸𝑇𝑀 is undecidable?

𝐸𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅ }

Step 0: Assume, for sake of contradiction, a machine R decides 𝐸𝑇𝑀

Key Idea: M1 can 

only accept w

So, testing emptiness on M1 = 

testing acceptance of M on w



TM EMPTINESS TESTING

Emptiness Test: Can you use a similar reduction to show 𝐸𝑇𝑀 is undecidable?

𝐸𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅ }

Thus, 𝐸𝑇𝑀 is undecidable via reduction from 𝐴𝑇𝑀!!



ONE MORE EXAMPLE

Regular?: Prove this language is undecidable through reduction.

𝑅𝑒𝑔𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀  𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒}

If we can decide this, 

can we use it to 

decide 𝐴𝑇𝑀?

Similar idea! 

Construct a machine 

that recognizes non-

regular languages 



ONE MORE EXAMPLE

Regular?: Prove this language is undecidable through reduction.

𝑅𝑒𝑔𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀  𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒}

Step 0: For sake of contradiction, assume 𝑅𝑒𝑔𝑇𝑀 is decidable, thus a machine R 

exists that decides it.

Similar idea! 

Construct a machine 

that recognizes non-

regular languages 

Step 1: Construct 𝑀2:

𝑴𝟐 = “on input x:

    if  x has form 𝟎𝒏𝟏𝒏, accept

    else, run M on w and accept iff  M accepts“



ONE MORE EXAMPLE

Regular?: Prove this language is undecidable through reduction.

𝑅𝑒𝑔𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀  𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒}

Step 0: For sake of contradiction, assume 𝑅𝑒𝑔𝑇𝑀 is decidable, thus a machine R 

exists that decides it.

Observe:

If M accepts w, then 𝑀2 accepts Σ∗

If M rejects/loops w, then 𝑀2 accepts 0𝑛1𝑛 

Step 1: Construct 𝑀2:

𝑴𝟐 = “on input x:

    if  x has form 𝟎𝒏𝟏𝒏, accept

    else, run M on w and accept iff  M accepts“



ONE MORE EXAMPLE

Regular?: Prove this language is undecidable through reduction.

𝑅𝑒𝑔𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀  𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒}

Step 0: For sake of contradiction, assume 𝑅𝑒𝑔𝑇𝑀 is decidable, thus a machine R 

exists that decides it.

Step 2: Recognize 𝐴𝑇𝑀

S = on input (M,w):

    Construct 𝑴𝟐 as described earlier

    Run R on 𝑴𝟐

    Accept IFF R accepts

Why does this work? 

𝐿(𝑀2) will be regular if 

M accepts w?
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