

GOALS!

1. Let’s revisit the concept of decidable languages, and find some.

2. Let’s find some examples of undecidable languages, and even some examples
of unrecognizable languages.

3. Let’s introduce the concept of reductions, which can expedite / simplify proofs

that certain problems are undecidable or unrecognizable.

THE BIG PICTURE!

.

Turing-recognizable
f‘ﬂfﬂ_._-_-_‘_‘-‘ﬁhh"h

decidable \""a.‘

DECIDABLE LANGUAGES

Recall that a decidable language is a language for which a Turing Machine exists

that computes it and always halts.

Let’s look at a few more decidable languages and eventually start discovering

some undecidable languages.

DECIDABLE LANGUAGES

Example: Aprs = {(B,w) | Bis a DFA that accepts input string w}

Can you describe a Turing Machine that decides this language?

DECIDABLE LANGUAGES

Example: Aprs = {(B,w) | Bis a DFA that accepts input string w}

M = “On input <B,w>:
1. Simulate B on input w

2. If B ends in accept state, accept. Otherwise, reject.”

N\

w is finite, B is also guaranteed to halt. So

Let’s briefly discuss some of the simulation must be possible and it must
the implementation details halt.

involved in this.

DECIDABLE LANGUAGES

Example: Aypa = {(B,w) | B is an NFA that accepts input string w}

How about this one?¢ How would you design the machine this time?

DECIDABLE LANGUAGES

Example: Aypa = {(B,w) | B is an NFA that accepts input string w}

N = “On input <B,w>:
1. Convert NFA B into DFA C using procedure given previously.
2. Run Turing Machine M from previous slide on <C,w>

3. If M accepts, then accept. Otherwise, reject.”

MORE DECIDABLE LANGUAGES

All of the following languages are similarly decidable:

Epra ={A| Aisa DFA and L(A) = @} Is language of the DFA empty?

Argx = {R,W| R is areg.exp.that generates w} Does a given expression generate this string?

EQpra ={A,B|A,B are DFANAL(A) = L(B)} Do two DFAs recognize the same language?

...and analogous languages for Context-Free Grammars (CFGs)

DO UNDECIDABLE LANGUAGES EXIST?

Are there problems that are unsolvable by computers (Turing Machines)?

DO UNDECIDABLE LANGUAGES EXIST?

Many of these problems are

recognizable, but not decidable.

/

Are there problems that are unsolvable by computers (Turing Machines)?

This has profound philosophical

° implicati in C fer Sci .

Yes! In fact, many simple and common B ROt pUIer ocience
problems are undecidable. Some things are fundamental

limitations that computers cannot

overcome.

DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language Ay = {(M,w) | M is a TM and M accepts w} is

undecidable.

This language is Turing-Recognizable though. Here is how:

U = “On input <M,w>:
1. Simulate M on input w

2. If M ever accepts, then accept.

3. If M ever reject, then reject.

=~

Note that if M loops

forever, then so will U

DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language Ary = {(M,w) | M is a TM and M accepts w} is

undecidable.

Okay, let’s prove it.
Intuitively, what is the This is one of the most famous

potential issue here? proofs in Computer Science

DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language Ay = {(M,w) | M is a TM and M accepts w} is

undecidable.

Step 1: For the sake of contradiction,
If A7y is decidable, then

there must exist a machine
accept it M accepts w / that decides it. Let’s call that
reject it M does not accept w. machine H

assume Ay, is decidable

DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language Ay = {(M,w) | M is a TM and M accepts w} is

undecidable.

Step 2: Construct a new machine D that uses

H as a subroutine. D
Input <M> f v
accept if M accepts w l l —> accept T > rejec
reject if M does not accept w. H(<M, M>)
— reject ——> accept

SOME COMMENTS ON MACHINE D

Input <M>

l l ___, accept ., reject

H(<M, M>)

|, reject —, accept

\

Notice that we flip the
output here. This will be

What does it mean to run a

machine with itself as inputé Qi iicrcieating the

contradiction
Is this even possible?

SOME COMMENTS ON MACHINE D

Step 3: Run the machine D with itself (D) as input. What happens?

D

Input <D>

l l ___, accept ., reject

H(<D, D>)

|, reject —, accept

Notice that D is running with Which means these outputs should

itself as input in two places, match because they are the output of

once overall (green square) the exact same thing (D running on D

and once simulated inside of H as input)

SOME COMMENTS ON MACHINE D

Step 3: Run the machine D with itself (D) as input. What happens?

D

Input <D>

l l ___, accept ., reject

H(<D, D>)

|, reject —, accept

Q.E.D: This is a contradiction because if H exists (A, is decidable), then there is at least
one set of inputs where H produces the wrong answer (well, it cannot produce the right

answer by definition).

DO UNDECIDABLE LANGUAGES EXIST?

This is really a proof by diagonalization

(My) (Mp) (Ms)
accept reject accept
accept acceplt accept
reject reject reject
accept accept reject

reject reject accept

DO UNDECIDABLE LANGUAGES EXIST?

This is really a proof by diagonalization

Each entry is a

machine’s output when (ﬂ/fl) <ﬂ«ffg> <ﬂ/fg) <ﬂ/f4> e e But this entry has to
e My [accept| reject accept be both accept and
description is given as accept |accept| accept reject at the same
o reject reject |reject

- time, leading to the
accept accept reject

contradiction

reject | | reject| |accept

D is defined to be the machine that has the opposite output

from the corresponding diagonal (see green outlines)

DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language Ary = {(M,w) | M is a TM and M accepts w} is

undecidable.

Thus it is proven, and there is at least one undecidable language

NON-TURING RECOGNIZABILITY?

s it possible to find languages that are NOT Turing recognizable?

Yes, but we will need to discuss
the idea of the complement of

a language first.

DEFINITION: COMPLEMENT OF A LANGUAGE

The complement of a language L is the set of strings that do NOT belong to L.

In other words, L(A) ={x € A|x & L(A)}

Some Examples:

L(A) L(A)

Strings containing less than ten 1’s Strings containing ten or more 1’s
DFA <D> accepts string <w> DFA <D> rejects string <w>
TM <M> halts on input <w> TM <M> loops forever on input <w>

Some Turing Machine
Executes on input / tape

MORE ON COMPLEMENTS

TM <M> halts on input <w>

Accept: Input on tape is in language

Reject: Input on tape is NOT in language

Loop: TM runs forever, never reaching accept or reject

state

In language above, Accepts (Yes) is easy because if

machine halts we are sure it is a Yes

However, detecting the Looping Forever
case is difficult to ascertain. |Is the machine

just taking a long time?

TM <M> loops forever on input <w>

K\O MORE ON COMPLEMENTS
\

O
Accept: Input in language

Now, Rejecting (No) is easy. If we
halt then we output Reject (No).

Some Turing Machine

: » | Reject: Input Not in language
Executes on input / tape

Loop: TM runs forever Now, distinguishing between Halt (Yes)
and Looping Forever is hard. Is the
machine just taking a long time and we
should really reject or is it actually

looping forever?

CO-TURING RECOGNIZABLE

A language L is co-Turing recognizable iff the complement L is Turing

recognizable.

L(A) L(A)

TM <M> loops TM <M> halts on Is recognizable

E—)

input <w> as shown earlier

forever on input <w>

ANOTHER WAY TO DEFINE DECIDABILITY

Theorem: A language is decidable if and only if it is Turing-recognizable and it

is co-Turing-recognizable

How to prove this?

Direction 1: If language is decidable = It is T-Rec. and Co-T-Rec.

Direction 2: If language is T-Rec. and Co-T-Rec. =2 |t is decidable

PROVING THE THEOREM

Theorem: A language is decidable if and only if it is Turing-recognizable and it

is co-Turing-recognizable

Direction 1: If language is decidable =2 It is T-Rec. and Co-T-Rec.

Recognizer
— If D accepts, accept
| D
nput w
/ —> If D rejects, reject
Assume language Thus, a machine that
—)

decides A (let’s call it
A is decidable (

D) must exist

Co-Recognizer
\ D —> If D accepts, reject

Input w

— If D rejects, accept

PROVING THE THEOREM

Theorem: A language is decidable if and only if it is Turing-recognizable and it

is co-Turing-recognizable

Direction 2: If language is T-Rec. and Co-T-Rec. =2 It is decidable

Recognizer
R
Assume A Thus, machines /
: w=) | that recognize
IS(-:I-R :;d each exists - - Input w
- ecognizer
\ CRR g

Use these to construct a decider
for A

Recognizer

A\ 4

Non-
deterministical
ly run R and
CR in parallel

R

Co-
Recognizer

> If R accepts,
accept

»If CR accepts,
reject

UNRECOGNIZABILITY!

Finally ready to find an unrecognizable language

Theorem: Aty is unrecognizable.

Recall that Apy = {(M,w) | M is a TM and M accepts w}, thus:

Ary ={M,w) | M is a TM and M rejects w or loops forever}

UNRECOGNIZABILITY!

Finally ready to find an unrecognizable language

Theorem: Aty is unrecognizable.

Can you prove it¢

Assume for sake of contradiction that A, is recognizable

This means that A7y, (assumed) and A7y, (proven earlier) are both recognizable

Thus, A7), is decidable by earlier theorem (both it and complement are recognizable)

Contradiction! Ay, is undecidable as proven earlier.

WHAT IS REDUCIBILITY?

Reduction: A process through which problems are related to one another through

comparison. This comparison establishes that one problem can be solved if the other is.

Problem A: Enter Japan during Covid

Get Covid Visa Exception pamees iy This one was hard!

Book ticket(s)

Travel on plane, etc. &

These are all easy!

Go visit Obaachan p

A\N

WHAT IS REDUCIBILITY?

J |

Reduction: A process through which problems are related to one another through

comparison. This comparison establishes that one problem can be solved if the other is.

Problem A: Enter Japan during Covid

Get Covid Visa Exception

Book ticket(s)

Travel on plane, etc.

Go visit Obaachan

Reduces to

Problem B: Get Covid Visa Exception.

Retrieve Marriage Paperwork
(Japan)

Acquire invite from citizen

Bring paperwork to embassy in DC

\ Now this one

is hard!

WHAT IS REDUCIBILITY?

Problem A: Enter Japan during Covid Problem B: Get Covid Visa Exception.

Retrieve Marriage Paperwork

Get Covid Visa Exception (Japan)

Book ticket(s) Reduces fo Acquire invite from citizen

Bring paperwork to embassy in DC

Travel on plane, etc.

Go visit Obaachan

Question: What if it is a FACT that “Problem A: Enter Japan During Covid” is impossible to
accomplish¢ What can you then conclude is also impossible? Why?

m \\; REDUCTION PROCESS

Reduction: A reduction exists between problems A and B if a solution to B can

be used to develop a solution for A.

Problem A

Solve problem B

Problem B

Do easy work Reduces to
p—— Solve problem B

Do more easy work

THE HALTING PROBLEM

The Halting Problem: Given a Turing machine, does it halt:

Halty,, ={(M,w) | M is a TM and M halts on input w}

Ay (M, w)

Accept if M accepts
Reject if M rejects

Reject if M loops forever

Reduces to

I

Haltry (M, w)

Does M halt on w?

/

If | can solve the problem in
green, then | can solve both

of these problems!!

THE HALTING PROBLEM

Ary (M, w)

Accept if M accepts

Reject if M rejects

Reject if M loops forever

HaltTM (M, W)

Reduces to
E— Does M halt on w?

Assume for the sake of

contradiction, that Haltry, is RR—

decidable. Thus, some machine R

exists that decides it.

Machine M, on input w:

- Invoke R on (M,w) to see if M halts. If not, reject.
- Else simulate M on input w:

- If M accepts, then accept.

- If M rejects, then reject.

Then, this machine would decide Atm, but that contradicts our theorem
that ATM is undecidable. Thus, halt is also undecidable

THE HALTING PROBLEM

Theorem: Haltr;, is undecidable

Proof was simplified by using a
proof by contradiction via a valid

reduction from Aty

TM EMPTINESS TESTING

Emptiness Test: Can you use a similar reduction to show E7;, is undecidable?

Ery ={M | MisaTM and L(M) = @ }

In other words, test
whether the given

machine never accepts

TM EMPTINESS TESTING

Emptiness Test: Can you use a similar reduction to show E7,, is undecidable?

Ery =M |MisaTM and L(M) = }

Step 0: Assume, for sake of contradiction, a machine R decides E7,

*Notice that w is

Step 1: Modify M: .
/ hardcoded into
M = “on input x:

description of My
if x # W, reject

otherwise, run M on w, accept iff M does* \
Why is this

helpful?

TM EMPTINESS TESTING

Emptiness Test: Can you use a similar reduction to show E7,, is undecidable?

Ery =M |MisaTM and L(M) = }

Step 0: Assume, for sake of contradiction, a machine R decides E7,

Step 1: Modify M: Step 2: Solve Atm

M = “on input x: S = “on input (M,w):
if x # w, reject Construct M as described
Run R on input M 4

Flip the output of R*

\ \

Key Idea: M1 can So, testing emptiness on M1 =

otherwise, run M on w, accept iff M does*

only accept w testing acceptance of M on w

TM EMPTINESS TESTING

Emptiness Test: Can you use a similar reduction to show E7,, is undecidable?

Ery =M |MisaTM and L(M) = }

Thus, E1p, is undecidable via reduction from Ay, !!

ONE MORE EXAMPLE

Regular?: Prove this language is undecidable through reduction.

Regry ={M | MisaTM and L(M) is a regular language}

.

If we can decide this, Similar ideal

can we use it to Construct a machine
decide Arj? that recognizes non-

regular languages

ONE MORE EXAMPLE

Regular?: Prove this language is undecidable through reduction.

Regry ={M | M is aTM and L(M) is a regular language}

Step O: For sake of contradiction, assume Regr,, is decidable, thus a machine R

exists that decides it.

Similar idegl Step 1: Construct M,:

et 1] C R
Construct a machine M, = “on input x:
that recognizes non- if x has form 0" 1", accept

regular languages else, run M on w and accept iff M accepts

ONE MORE EXAMPLE

Regular?: Prove this language is undecidable through reduction.

Regry ={M | M is aTM and L(M) is a regular language}

Step O: For sake of contradiction, assume Regr,, is decidable, thus a machine R

exists that decides it.

Observe: Step 1: Construct M,:
If M accepts w, then M, accepts X* M, = “on input x:

if x has form 0"1", accept

. n1n
If M rejects/loops w, then M; accepts 0™1 else, run M on w and accept iff M accepfts*

ONE MORE EXAMPLE

Regular?: Prove this language is undecidable through reduction.

Regry ={M | M is aTM and L(M) is a regular language}

Step O: For sake of contradiction, assume Regr,, is decidable, thus a machine R

exists that decides it.

Step 2: Recognize Aty

S = on input (Mw): Why does this work?
Construct M, as described earlier / L(M;) will be regular if

Run R on M, M accepts wé

Accept IFF R accepts

	Slide 1: Decidability
	Slide 2: Goals!
	Slide 3: The big Picture!
	Slide 4: Part 1: Decidable Languages
	Slide 5: Decidable Languages
	Slide 6: Decidable Languages
	Slide 7: Decidable Languages
	Slide 8: Decidable Languages
	Slide 9: Decidable Languages
	Slide 10: More Decidable Languages
	Slide 11: Part 2: Undecidable Languages
	Slide 12: Do undecidable languages exiSt?
	Slide 13: Do undecidable languages exiSt?
	Slide 14: Do undecidable languages exist?
	Slide 15: Do undecidable languages exist?
	Slide 16: Do undecidable languages exist?
	Slide 17: Do undecidable languages exist?
	Slide 18: Some Comments on Machine D
	Slide 19: Some Comments on Machine D
	Slide 20: Some Comments on Machine D
	Slide 21: Do undecidable languages exist?
	Slide 22: Do undecidable languages exist?
	Slide 23: Do undecidable languages exist?
	Slide 24: Part 3: Non-Recognizable Languages?
	Slide 25: Non-Turing Recognizability?
	Slide 26: Definition: Complement of a Language
	Slide 27: More on complements
	Slide 28: More on complements
	Slide 29: Co-Turing Recognizable
	Slide 30: Another way to define decidability
	Slide 31: Proving the theorem
	Slide 32: Proving the theorem
	Slide 33: UnRecognizability!
	Slide 34: UnRecognizability!
	Slide 35: Part 4: Introduction to Reducibility
	Slide 36: What is Reducibility?
	Slide 37: What is Reducibility?
	Slide 38: What is Reducibility?
	Slide 39: Reduction Process
	Slide 40: The Halting Problem
	Slide 41: The Halting Problem
	Slide 42: The Halting Problem
	Slide 43: TM Emptiness Testing
	Slide 44: TM Emptiness Testing
	Slide 45: TM Emptiness Testing
	Slide 46: TM Emptiness Testing
	Slide 47: One More Example
	Slide 48: One More Example
	Slide 49: One More Example
	Slide 50: One More Example

