
DECIDABILITY
DISCRETE MATHEMATICS AND THEORY 2

MARK FLORYAN

GOALS!

1. Let’s revisit the concept of decidable languages, and find some.

2. Let’s find some examples of undecidable languages, and even some examples

of unrecognizable languages.

3. Let’s introduce the concept of reductions, which can expedite / simplify proofs

that certain problems are undecidable or unrecognizable.

THE BIG PICTURE!

PART 1: DECIDABLE LANGUAGES

DECIDABLE LANGUAGES

Recall that a decidable language is a language for which a Turing Machine exists

that computes it and always halts.

Let’s look at a few more decidable languages and eventually start discovering

some undecidable languages.

DECIDABLE LANGUAGES

Example: 𝐴𝐷𝐹𝐴 = 𝐵, 𝑤 𝐵 𝑖𝑠 𝑎 𝐷𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤}

Can you describe a Turing Machine that decides this language?

DECIDABLE LANGUAGES

Example: 𝐴𝐷𝐹𝐴 = 𝐵, 𝑤 𝐵 𝑖𝑠 𝑎 𝐷𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤}

M = “On input <B,w>:

1. Simulate B on input w

2. If B ends in accept state, accept. Otherwise, reject.”

w is finite, B is also guaranteed to halt. So

the simulation must be possible and it must

halt.

Let’s briefly discuss some of

the implementation details

involved in this.

DECIDABLE LANGUAGES

Example: 𝐴𝑁𝐹𝐴 = 𝐵, 𝑤 𝐵 𝑖𝑠 𝑎𝑛 𝑁𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤}

How about this one? How would you design the machine this time?

DECIDABLE LANGUAGES

Example: 𝐴𝑁𝐹𝐴 = 𝐵, 𝑤 𝐵 𝑖𝑠 𝑎𝑛 𝑁𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤}

N = “On input <B,w>:

1. Convert NFA B into DFA C using procedure given previously.

2. Run Turing Machine M from previous slide on <C,w>

3. If M accepts, then accept. Otherwise, reject.”

MORE DECIDABLE LANGUAGES

𝐸𝐷𝐹𝐴 = 𝐴 𝐴 𝑖𝑠 𝑎 𝐷𝐹𝐴 𝑎𝑛𝑑 𝐿 𝐴 = ∅}

All of the following languages are similarly decidable:

Is language of the DFA empty?

𝐴𝑅𝐸𝑋 = 𝑅, 𝑤 𝑅 𝑖𝑠 𝑎 𝑟𝑒𝑔. 𝑒𝑥𝑝. 𝑡ℎ𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝑤} Does a given expression generate this string?

𝐸𝑄𝐷𝐹𝐴 = 𝐴, 𝐵 𝐴, 𝐵 𝑎𝑟𝑒 𝐷𝐹𝐴 ∧ 𝐿 𝐴 = 𝐿(𝐵)} Do two DFAs recognize the same language?

…and analogous languages for Context-Free Grammars (CFGs)

PART 2: UNDECIDABLE LANGUAGES

DO UNDECIDABLE LANGUAGES EXIST?

Are there problems that are unsolvable by computers (Turing Machines)?

DO UNDECIDABLE LANGUAGES EXIST?

Are there problems that are unsolvable by computers (Turing Machines)?

Yes! In fact, many simple and common

problems are undecidable.

Many of these problems are

recognizable, but not decidable.

This has profound philosophical

implications in Computer Science.

Some things are fundamental

limitations that computers cannot

overcome.

DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language 𝐴𝑇𝑀 = 𝑀, 𝑤 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤} is

undecidable.

This language is Turing-Recognizable though. Here is how:

U = “On input <M,w>:

1. Simulate M on input w

2. If M ever accepts, then accept.

3. If M ever reject, then reject.

Note that if M loops

forever, then so will U

DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language 𝐴𝑇𝑀 = 𝑀, 𝑤 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤} is

undecidable.

Okay, let’s prove it.

Intuitively, what is the

potential issue here?

This is one of the most famous

proofs in Computer Science

DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language 𝐴𝑇𝑀 = 𝑀, 𝑤 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤} is

undecidable.

Step 1: For the sake of contradiction,

assume 𝐴𝑇𝑀 is decidable If 𝐴𝑇𝑀 is decidable, then

there must exist a machine

that decides it. Let’s call that

machine H

DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language 𝐴𝑇𝑀 = 𝑀, 𝑤 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤} is

undecidable.

Step 2: Construct a new machine D that uses

H as a subroutine. D
Input <M>

H(<M, M>)

accept

reject accept

reject

SOME COMMENTS ON MACHINE D

D

Input <M>

H(<M, M>)

accept

reject accept

reject

What does it mean to run a

machine with itself as input?

Is this even possible?

Notice that we flip the

output here. This will be

important for creating the

contradiction

SOME COMMENTS ON MACHINE D

D

Input <D>

H(<D, D>)

accept

reject accept

reject

Step 3: Run the machine D with itself (D) as input. What happens?

Notice that D is running with

itself as input in two places,

once overall (green square)

and once simulated inside of H

Which means these outputs should

match because they are the output of

the exact same thing (D running on D

as input)

SOME COMMENTS ON MACHINE D

D

Input <D>

H(<D, D>)

accept

reject accept

reject

Step 3: Run the machine D with itself (D) as input. What happens?

Q.E.D: This is a contradiction because if H exists (𝐴𝑇𝑀 is decidable), then there is at least

one set of inputs where H produces the wrong answer (well, it cannot produce the right

answer by definition).

DO UNDECIDABLE LANGUAGES EXIST?

This is really a proof by diagonalization

DO UNDECIDABLE LANGUAGES EXIST?

This is really a proof by diagonalization

Each entry is a

machine’s output when

another machine’s

description is given as

input

D is defined to be the machine that has the opposite output

from the corresponding diagonal (see green outlines)

But this entry has to

be both accept and

reject at the same

time, leading to the

contradiction

DO UNDECIDABLE LANGUAGES EXIST?

Theorem: The language 𝐴𝑇𝑀 = 𝑀, 𝑤 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤} is

undecidable.

Thus it is proven, and there is at least one undecidable language

PART 3: NON-RECOGNIZABLE LANGUAGES?

NON-TURING RECOGNIZABILITY?

Is it possible to find languages that are NOT Turing recognizable?

Yes, but we will need to discuss

the idea of the complement of

a language first.

DEFINITION: COMPLEMENT OF A LANGUAGE

The complement of a language ℒ is the set of strings that do NOT belong to ℒ.

In other words, ℒ(𝐴) = 𝑥 ∈ 𝐴 𝑥 ∉ ℒ(𝐴)}

Some Examples:

ℒ(𝐴) ℒ(𝐴)

Strings containing less than ten 1’s Strings containing ten or more 1’s

DFA <D> accepts string <w> DFA <D> rejects string <w>

TM <M> halts on input <w> TM <M> loops forever on input <w>

MORE ON COMPLEMENTS

Some Turing Machine

Executes on input / tape

Accept: Input on tape is in language

Reject: Input on tape is NOT in language

Loop: TM runs forever, never reaching accept or reject

state

In language above, Accepts (Yes) is easy because if

machine halts we are sure it is a Yes

However, detecting the Looping Forever

case is difficult to ascertain. Is the machine

just taking a long time?

TM <M> halts on input <w>

MORE ON COMPLEMENTS

Some Turing Machine

Executes on input / tape

Accept: Input in language

Reject: Input Not in language

Loop: TM runs forever

Now, Rejecting (No) is easy. If we

halt then we output Reject (No).

Now, distinguishing between Halt (Yes)

and Looping Forever is hard. Is the

machine just taking a long time and we

should really reject or is it actually

looping forever?

TM <M> loops forever on input <w>

CO-TURING RECOGNIZABLE

A language ℒ is co-Turing recognizable iff the complement ҧℒ is Turing

recognizable.

ℒ(𝐴)

TM <M> loops

forever on input <w>

ℒ(𝐴)

TM <M> halts on

input <w>

Is recognizable

as shown earlier

ANOTHER WAY TO DEFINE DECIDABILITY

Theorem: A language is decidable if and only if it is Turing-recognizable and it

is co-Turing-recognizable

How to prove this?

Direction 1: If language is decidable → It is T-Rec. and Co-T-Rec.

Direction 2: If language is T-Rec. and Co-T-Rec. → It is decidable

PROVING THE THEOREM

Theorem: A language is decidable if and only if it is Turing-recognizable and it

is co-Turing-recognizable

Direction 1: If language is decidable → It is T-Rec. and Co-T-Rec.

Assume language

A is decidable

Thus, a machine that

decides A (let’s call it

D) must exist

D
Input w

Recognizer
If D accepts, accept

If D rejects, reject

D
Input w

Co-Recognizer

If D accepts, reject

If D rejects, accept

PROVING THE THEOREM

Theorem: A language is decidable if and only if it is Turing-recognizable and it

is co-Turing-recognizable

Direction 2: If language is T-Rec. and Co-T-Rec. → It is decidable

Assume A

is TR and

Co-TR

Thus, machines

that recognize

each exists

R
Recognizer

Use these to construct a decider

for A

CR

Co-

Recognizer

Non-

deterministical

ly run R and

CR in parallel

D

Input w

R
Recognizer

CR

Co-

Recognizer

If R accepts,

accept

If CR accepts,

reject

UNRECOGNIZABILITY!

Theorem: 𝑨𝑻𝑴 is unrecognizable.

Finally ready to find an unrecognizable language

Recall that 𝐴𝑇𝑀 = 𝑀, 𝑤 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤}, thus:

𝐴𝑇𝑀 = 𝑀, 𝑤 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑟𝑒𝑗𝑒𝑐𝑡𝑠 𝑤 𝑜𝑟 𝑙𝑜𝑜𝑝𝑠 𝑓𝑜𝑟𝑒𝑣𝑒𝑟}

UNRECOGNIZABILITY!

Theorem: 𝑨𝑻𝑴 is unrecognizable.

Finally ready to find an unrecognizable language

Can you prove it?

Assume for sake of contradiction that 𝐴𝑇𝑀 is recognizable

This means that 𝐴𝑇𝑀 (assumed) and 𝐴𝑇𝑀 (proven earlier) are both recognizable

Thus, 𝐴𝑇𝑀 is decidable by earlier theorem (both it and complement are recognizable)

Contradiction! 𝑨𝑻𝑴 is undecidable as proven earlier.

PART 4: INTRODUCTION TO REDUCIBILITY

WHAT IS REDUCIBILITY?

Reduction: A process through which problems are related to one another through

comparison. This comparison establishes that one problem can be solved if the other is.

Problem A: Enter Japan during Covid

Get Covid Visa Exception

Book ticket(s)

Travel on plane, etc.

Go visit Obaachan

These are all easy!

This one was hard!

WHAT IS REDUCIBILITY?

Reduction: A process through which problems are related to one another through

comparison. This comparison establishes that one problem can be solved if the other is.

Problem A: Enter Japan during Covid

Get Covid Visa Exception

Book ticket(s)

Travel on plane, etc.

Go visit Obaachan

Problem B: Get Covid Visa Exception.

Retrieve Marriage Paperwork

(Japan)

Acquire invite from citizen

Bring paperwork to embassy in DC

…

Reduces to

Now this one

is hard!

WHAT IS REDUCIBILITY?

Problem A: Enter Japan during Covid

Get Covid Visa Exception

Book ticket(s)

Travel on plane, etc.

Go visit Obaachan

Problem B: Get Covid Visa Exception.

Retrieve Marriage Paperwork

(Japan)

Acquire invite from citizen

Bring paperwork to embassy in DC

…

Reduces to

Question: What if it is a FACT that “Problem A: Enter Japan During Covid” is impossible to

accomplish? What can you then conclude is also impossible? Why?

REDUCTION PROCESS

Reduction: A reduction exists between problems A and B if a solution to B can

be used to develop a solution for A.

Problem A

Solve problem B

Do easy work

Do more easy work

…

Problem B

Solve problem B
Reduces to

THE HALTING PROBLEM

The Halting Problem: Given a Turing machine, does it halt:

𝐻𝑎𝑙𝑡𝑇𝑀 = 𝑀, 𝑤 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑤}

𝑨𝑻𝑴(𝑴, 𝒘)

Reject if M loops forever

Reject if M rejects

Accept if M accepts
𝑯𝒂𝒍𝒕𝑻𝑴(𝑴, 𝒘)

Does M halt on w?
Reduces to

If I can solve the problem in

green, then I can solve both

of these problems!!

THE HALTING PROBLEM

𝑨𝑻𝑴(𝑴, 𝒘)

Reject if M loops forever

Reject if M rejects

Accept if M accepts
𝑯𝒂𝒍𝒕𝑻𝑴(𝑴, 𝒘)

Does M halt on w?
Reduces to

Assume for the sake of

contradiction, that 𝐻𝑎𝑙𝑡𝑇𝑀 is

decidable. Thus, some machine R

exists that decides it.

Then, this machine would decide Atm, but that contradicts our theorem

that ATM is undecidable. Thus, halt is also undecidable

Machine M, on input w:

 - Invoke R on (M,w) to see if M halts. If not, reject.

 - Else simulate M on input w:

 - If M accepts, then accept.

 - If M rejects, then reject.

THE HALTING PROBLEM

Theorem: 𝐻𝑎𝑙𝑡𝑇𝑀 is undecidable

Proof was simplified by using a

proof by contradiction via a valid

reduction from 𝐴𝑇𝑀

TM EMPTINESS TESTING

Emptiness Test: Can you use a similar reduction to show 𝐸𝑇𝑀 is undecidable?

𝐸𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅ }

In other words, test

whether the given

machine never accepts

TM EMPTINESS TESTING

Emptiness Test: Can you use a similar reduction to show 𝐸𝑇𝑀 is undecidable?

𝐸𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅ }

Step 1: Modify M:

𝑴𝟏 = “on input x:

 𝒊𝒇 𝒙 ≠ 𝒘, reject

 otherwise, run M on w, accept iff M does“

*Notice that w is

hardcoded into

description of 𝑀1

Why is this

helpful?

Step 0: Assume, for sake of contradiction, a machine R decides 𝐸𝑇𝑀

TM EMPTINESS TESTING

Step 1: Modify M:

𝑴𝟏 = “on input x:

 𝒊𝒇 𝒙 ≠ 𝒘, reject

 otherwise, run M on w, accept iff M does“

Step 2: Solve Atm

𝑺 = “on input (M,w):

 Construct 𝑴𝟏 as described

 Run R on input 𝑴𝟏

 Flip the output of R“

Emptiness Test: Can you use a similar reduction to show 𝐸𝑇𝑀 is undecidable?

𝐸𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅ }

Step 0: Assume, for sake of contradiction, a machine R decides 𝐸𝑇𝑀

Key Idea: M1 can

only accept w

So, testing emptiness on M1 =

testing acceptance of M on w

TM EMPTINESS TESTING

Emptiness Test: Can you use a similar reduction to show 𝐸𝑇𝑀 is undecidable?

𝐸𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅ }

Thus, 𝐸𝑇𝑀 is undecidable via reduction from 𝐴𝑇𝑀!!

ONE MORE EXAMPLE

Regular?: Prove this language is undecidable through reduction.

𝑅𝑒𝑔𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒}

If we can decide this,

can we use it to

decide 𝐴𝑇𝑀?

Similar idea!

Construct a machine

that recognizes non-

regular languages

ONE MORE EXAMPLE

Regular?: Prove this language is undecidable through reduction.

𝑅𝑒𝑔𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒}

Step 0: For sake of contradiction, assume 𝑅𝑒𝑔𝑇𝑀 is decidable, thus a machine R

exists that decides it.

Similar idea!

Construct a machine

that recognizes non-

regular languages

Step 1: Construct 𝑀2:

𝑴𝟐 = “on input x:

 if x has form 𝟎𝒏𝟏𝒏, accept

 else, run M on w and accept iff M accepts“

ONE MORE EXAMPLE

Regular?: Prove this language is undecidable through reduction.

𝑅𝑒𝑔𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒}

Step 0: For sake of contradiction, assume 𝑅𝑒𝑔𝑇𝑀 is decidable, thus a machine R

exists that decides it.

Observe:

If M accepts w, then 𝑀2 accepts Σ∗

If M rejects/loops w, then 𝑀2 accepts 0𝑛1𝑛

Step 1: Construct 𝑀2:

𝑴𝟐 = “on input x:

 if x has form 𝟎𝒏𝟏𝒏, accept

 else, run M on w and accept iff M accepts“

ONE MORE EXAMPLE

Regular?: Prove this language is undecidable through reduction.

𝑅𝑒𝑔𝑇𝑀 = 𝑀 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒}

Step 0: For sake of contradiction, assume 𝑅𝑒𝑔𝑇𝑀 is decidable, thus a machine R

exists that decides it.

Step 2: Recognize 𝐴𝑇𝑀

S = on input (M,w):

 Construct 𝑴𝟐 as described earlier

 Run R on 𝑴𝟐

 Accept IFF R accepts

Why does this work?

𝐿(𝑀2) will be regular if

M accepts w?

	Slide 1: Decidability
	Slide 2: Goals!
	Slide 3: The big Picture!
	Slide 4: Part 1: Decidable Languages
	Slide 5: Decidable Languages
	Slide 6: Decidable Languages
	Slide 7: Decidable Languages
	Slide 8: Decidable Languages
	Slide 9: Decidable Languages
	Slide 10: More Decidable Languages
	Slide 11: Part 2: Undecidable Languages
	Slide 12: Do undecidable languages exiSt?
	Slide 13: Do undecidable languages exiSt?
	Slide 14: Do undecidable languages exist?
	Slide 15: Do undecidable languages exist?
	Slide 16: Do undecidable languages exist?
	Slide 17: Do undecidable languages exist?
	Slide 18: Some Comments on Machine D
	Slide 19: Some Comments on Machine D
	Slide 20: Some Comments on Machine D
	Slide 21: Do undecidable languages exist?
	Slide 22: Do undecidable languages exist?
	Slide 23: Do undecidable languages exist?
	Slide 24: Part 3: Non-Recognizable Languages?
	Slide 25: Non-Turing Recognizability?
	Slide 26: Definition: Complement of a Language
	Slide 27: More on complements
	Slide 28: More on complements
	Slide 29: Co-Turing Recognizable
	Slide 30: Another way to define decidability
	Slide 31: Proving the theorem
	Slide 32: Proving the theorem
	Slide 33: UnRecognizability!
	Slide 34: UnRecognizability!
	Slide 35: Part 4: Introduction to Reducibility
	Slide 36: What is Reducibility?
	Slide 37: What is Reducibility?
	Slide 38: What is Reducibility?
	Slide 39: Reduction Process
	Slide 40: The Halting Problem
	Slide 41: The Halting Problem
	Slide 42: The Halting Problem
	Slide 43: TM Emptiness Testing
	Slide 44: TM Emptiness Testing
	Slide 45: TM Emptiness Testing
	Slide 46: TM Emptiness Testing
	Slide 47: One More Example
	Slide 48: One More Example
	Slide 49: One More Example
	Slide 50: One More Example

