
CONTEXT-FREE LANGUAGES
DISCRETE MATHEMATICS AND THEORY 2

MARK FLORYAN

GOALS!

1. Very quick review of the Chomsky Hierarchy (overall picture).

2. Our second model of computation, the pushdown automata!! Let’s add

memory to that finite state machine!!

3. What languages can this new model of computation now recognize? Can we

find languages it cannot recognize now?

PART 1: REMINDER OF WHERE WE ARE / CHOMSKY
HIERARCHY

TYPES OF PROBLEMS

Name Decision Problem Function Language

XOR Are there an odd

number of 1’s?
𝑓 𝑏 = ቊ

0 number of 1s is even
1 number of 1s is 𝑜𝑑𝑑

ሼ
ȁ

𝑏
∈ Σ∗ 𝑏 has and odd number of 1s}

Majority Are there more 1s

than 0s?
𝑓 𝑏 = ቊ

0 more 0s than 1s
1 more 1s than 0s

𝑏 ∈ Σ∗ 𝑏 has more 1s than 0s}

Thing you want

to compute

Does it have have a

property?

𝑓 𝑏
= 1 𝑖𝑓 𝑖𝑡 𝑑𝑜𝑒𝑠 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦

ሼ𝑏 ∈ Σ∗ȁ𝑏 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦}

Is1 Is the string exactly

“1”?

𝑓 𝑏 = 1 𝑖𝑓 𝑏 == 1 ሼ1}

Is_infinite Is the length of the

string infinite?

𝑓 𝑏 = 0 ∅

CHOMSKY HIERARCHY

A description of

languages and their

relationship to one

another

Each language has a

computational model

that recognizes it

In this deck, we will see the context-free

languages and the machines that recognize

them

These are all equivalent in their expressive power.

OVERVIEW OF THIS DECK

Pushdown Automata

NFA w/ a stack. Can recognize exactly

the context-free languages

Context-Free Languages:

A Class of languages that are more

expressive than regular languages

Context-Free Grammar:

A “string” description of a context-free

language (by definition)

At the end of this deck, we will also see that context-free languages

have a pumping lemma that can be used to prove some languages are

NOT context-free.

For now, we allow non-determinism freely with this computational model. We

will discuss (briefly) the ramifications for this later in the deck.

PART 2: CONTEXT-FREE GRAMMARS

INTRODUCTION: WHAT IS A CONTEXT-FREE
GRAMMAR

QUICK ASIDE: FINITE AUTOMATA AND REGULAR
LANGUAGES

String x = “hellothere123”;

double y = 23.456;

int z = 67.8; //syntax error

Motivating Question: Computational models are often of interest in the application of programming languages and

compilers. Given a program, is it a valid program in the given language that does not contain any syntax errors.

Purple words do not need any

“computation” to confirm. Just make sure

the word matches something in a set of

known valid keywords for types.

Regular expressions really shine here. Each type has an

automata that recognizes if string is in the valid format.

 for String: “Σ∗”

 for double: 0 − 9 +. 0 − 9 + ∪ 0 − 9 +

 for int: 0 − 9 +

Green words are perfect for a finite

automata. Reg. Ex. is 𝛴∗\𝐾 where

K is the set of reserved keywords.

QUICK ASIDE: FINITE AUTOMATA AND REGULAR
LANGUAGES

String x = “hellothere123”;

double y = 23.456;

int z = 67.8; //syntax error

Motivating Question: Computational models are often of interest in the application of programming languages and

compilers. Given a program, is it a valid program in the given language that does not contain any syntax errors.

Can even handle some entire lines of code with

finite automata. declarations of double:

𝑑𝑜𝑢𝑏𝑙𝑒 Σ+ = 0 − 9 +. 0 − 9 + ∪ 0 − 9 +;

But in reality, code is more complicated than this. Consider:

- the right side of assignment can be a bigger expression,

or maybe result of an if statement.

- For loops can have nothing inside or a whole set of

assignments.

FORMAL DEFINITION OF A CFG

A context free grammar is:

A 4-tuple (𝑉, 𝛴, 𝑅, 𝑆) where:

1. 𝑉 is a finite set called the variables

2. 𝛴 is a finite set, disjoint from 𝑉, called the terminals

3. 𝑅 is a finite set of rules, with each rule being a variable and a string

of variables and terminals

4. 𝑆 ∈ 𝑉 is the start variable

SOME SIMPLE EXAMPLES

𝑆 → 𝑆𝑆 0 1 … 𝜖

Alphabet for all these grammars:

𝐴 = (Σ − ሼ. , +, −, =, ; })∗

Σ = ሼ0, 1, … , 9, 𝑎, 𝑏, … , 𝑧, . , +, −, =, ; }

Variables are denoted with

capital letters. The first variable

here is called the start variable

Each of these production rules

can be applied to substitute for

variables of the same name

Terminal characters like

these cannot be replaced,

but ensure the expression

will eventually be completed

through enough substitutionsExample:

Generate String “x10”:

S

SS

SSS

xSS

x1S

x10

SOME SIMPLE EXAMPLES

𝑆 → 𝑆𝑆 0 1 … 𝜖

Alphabet for all these grammars:

𝐴 from previous slide

Repeated application of first

rule to expand the size of the

string then replace each S

with individual characters.

Σ = ሼ0, 1, … , 9, 𝑎, 𝑏, … , 𝑧, . , +, −, =, ; }

𝐼 → 𝐼𝐼 0 … 9

I = 𝑑+

𝐷 → 𝐼. 𝐼

D = 𝑑+. 𝑑+

𝐼′ → 𝐴9𝐴14𝐴20

𝐴9 → 𝑖

𝐴14 → 𝑛

𝐴20 → 𝑡

I′ = “int”

𝐷′ → 𝐴4𝐴15𝐴5

𝐴4 → 𝑑

𝐴15 → 𝑜

…

𝐴5 → 𝑒

D′ = “double”

EXAMPLE CONTEXT-FREE GRAMMAR

𝑉 → 𝑇 𝑁 = 𝐸;

𝑇 → 𝐼′ȁ 𝐷′

𝑁 → 𝑆

𝐸 → 𝐶 𝐸 + 𝐸 𝐸 − 𝐸

𝐶 → 𝐷 ȁ 𝐼

Recall from previous slides that:

- I’ and D’ lead to “int” and “double”

- S leads to any string of numbers and letters

(variable name)

- I and D lead to valid int and double values

respectively

EXAMPLE CONTEXT-FREE GRAMMAR

Example string in this grammar:

𝑑𝑜𝑢𝑏𝑙𝑒 𝑚𝑦𝑣𝑎𝑟 = 3.4 + 5;

Derivation of that string:

V

T N = E;

double

S

myvar

E + E

C C

= ;+3.4 5

D
𝐼

𝑉 → 𝑇 𝑁 = 𝐸;

𝑇 → 𝐼′ȁ 𝐷′

𝑁 → 𝑆

𝐸 → 𝐶 𝐸 + 𝐸 𝐸 − 𝐸

𝐶 → 𝐷 ȁ 𝐼
𝐷′

ANOTHER EXAMPLE CFG

We learned last time that the language 𝐿 = 0𝑛1𝑛 is NOT regular.

Can you generate a context-free grammar that recognizes it?

Hint: You do not need regular expressions as terminal characters here. Your terminal characters will be 0

and 1.

ANOTHER EXAMPLE CFG

We learned last time that the language 𝐿 = 0𝑛1𝑛 is NOT regular.

S → B

B → 0B1

B → 𝜖

Example Derivation of 0313:

S

B

0B1

00B11

000B111

000111

CHALLENGE

Can you generate the following grammar on your own:

The grammar of all well formed arithmetic expressions containing

at most two variables (x and y), parentheses, and two operators

(+ and *).

Example string: (x+y)*(x*x)

PART 2: PUSHDOWN AUTOMATA

PUSHDOWN AUTOMATA

Pushdown Automata: Informally, is a

machine that combines an NFA (state

control) but adds a stack. The

machine can push and pop to the

stack

This state control is just a DFA/NFA just

like before!

Input is read in character by character

(same as NFA)

The stack provides the machine with memory. The machine can

push or pop from the top of the stack only during any state

transition (one push or pop per transition)

PUSHDOWN AUTOMATA

This pushdown automata recognizes the language:

𝐿 = 0𝑛1𝑛 ȁ 𝑛 ≥ 0

Make sure you know how to

read these transitions.

1,0 → 𝜖

means if you read a 1 from

input and a 0 is on top of

stack (pop it), and don’t push

(epsilon) anything

Q1 Q2

Q3Q4

𝜖, 𝜖 → $

𝜖, $ → 𝜖

0, 𝜖 → 0

1,0 → 𝜖

1,0 → 𝜖

Q1

Q4

PUSHDOWN AUTOMATA

This pushdown automata recognizes the language:

𝐿 = 0𝑛1𝑛 ȁ 𝑛 ≥ 0

Let’s step through w/ input:

000111

Q1 Q2

Q3Q4

𝜖, 𝜖 → $

𝜖, $ → 𝜖

0, 𝜖 → 0

1,0 → 𝜖

1,0 → 𝜖

Q1

Q4

PUSHDOWN AUTOMATA

This pushdown automata recognizes the language:

𝐿 = 𝑎𝑖𝑏𝑗𝑐𝑘 ȁ 𝑖, 𝑗, 𝑘 ≥ 0 𝑎𝑛𝑑 𝑖 = 𝑗 𝑜𝑟 𝑖 = 𝑘

Do not be afraid to use non-determinism here. We

don’t really know whether to match the number of

a’s with the b’s or the c’s. Can we try both?

Basic Idea: Push the a’s to the

stack and then read them off to

match them to either the b’s or

the c’s

PUSHDOWN AUTOMATA

This pushdown automata recognizes the language:

𝐿 = 𝑎𝑖𝑏𝑗𝑐𝑘 ȁ 𝑖, 𝑗, 𝑘 ≥ 0 𝑎𝑛𝑑 𝑖 = 𝑗 𝑜𝑟 𝑖 = 𝑘

Q3

Q5

𝜖, 𝜖 → $

c, 𝜖 → 𝜖

𝑏, 𝑎 → 𝜖

Q1Q4

Q4Q7

Q1

Q2 Q6

𝑎, 𝜖 → 𝑎

𝜖, 𝜖 → 𝜖 𝜖, 𝜖 → 𝜖

𝜖, $ → 𝜖

𝜖, $ → 𝜖

b, 𝜖 → 𝜖 c, 𝑎 → 𝜖

FORMAL DEFINITION PUSHDOWN AUTOMATA

A pushdown automata is:

A 6-tuple (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐹) where 𝑄, Σ, Γ, and 𝐹 are all finite

sets and:

1. 𝑄 is the set of states

2. Σ is the input alphabet

3. Γ is the stack alphabet

4. 𝛿: 𝑄 𝑥 Σ𝜖 𝑥 Γ𝜖 → 𝒫(𝑄 𝑥 Γ𝜖) is the transition function

5. 𝑞0 ∈ 𝑄 is the start state

6. 𝐹 ⊆ 𝑄 is the set of accept states

TRY IT ON YOUR OWN!

Can you create PD that recognizes:

𝐿 = 𝑤𝑤𝑅 ȁ 𝑤ℎ𝑒𝑟𝑒 𝑤𝑅 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑

EQUIVALENCE WITH CONTEXT-FREE GRAMMARS

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

How to prove:

Direction 1: Assume L is context-free, show how to construct the pushdown automata for it.

Direction 2: Assume we have a pushdown automata, show how to construct the context-free grammar that

describes it.

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Direction 1: Assume L is context-free, show how to construct the pushdown automata for it.

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Direction 1: Assume L is context-free, show how to construct the pushdown automata for it.

High level idea of proof:

Let L be a context-free grammar, this means it can be described by a set of substitutions of variables /

terminals (see formal definition of CFG)

To construct the PDA that recognizes it:

1. Put the start variable on the stack

2. Loop: Pop a variable off the stack, look at rules that can be substituted for, non-deterministically branch off for each one and

put new symbol on the stack.

3. If terminal is on the stack, pop it and check. it against the next character of input.

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Direction 1: Assume L is context-free, show how to construct the pushdown automata for it.

Start by pushing $

onto the stack

following by start

variable S

This main loop has a

non-deterministic

condition for every

possible rule substitution

if we see a variable A on top of

stack (e.g.,), pop A off and push

the things it can be substituted with

onto stack one character at a time

If we see a terminal a

on top of stack, pop it

off and check it

against the next

character of input

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Direction 1: Assume L is context-free, show how to construct the pushdown automata for it.

EXAMPLE:

Consider the grammar:

𝑆 → 𝑎𝑇𝑏 ȁ 𝑏

𝑇 → 𝑇𝑎 ȁ 𝜖

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Direction 2: Assume we have a pushdown automata, show how to construct the context-free grammar that

describes it.

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Start with an arbitrary PDA, called P

Convert into

A grammar that is equivalent to P:

𝑆 → 𝐴𝑟𝑠𝐴𝑠𝑞

𝐴𝑟𝑠 → 𝜖

…

Direction 2: Assume we have a pushdown automata, show how to construct the CFG that describes it.

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Start with an arbitrary PDA, called P Step 1: Let’s simplify P a little bit so we know SOMETHING about it’s structure.

We make the following changes to P:

1. If P has multiple accept states, change it to have only one

2. If P has elements on the stack before accepting, empty the stack first

3. Every transition either pushes a symbol, or pops a symbol, but not both

These changes are not too difficult to make. I

will verbally describe how to do all 3 of these.

Direction 2: Assume we have a pushdown automata, show how to construct the CFG that describes it.

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Direction 2: Assume we have a pushdown automata, show how to construct the CFG that describes it.

Overall idea: We need to get from start state (empty stack) to accept state (empty stack)

Variable 𝐴𝑝𝑞 represents moving from state p

to state q without changing the state of the

stack

Notice that in this case, we move

from state p to r (without altering

stack) and then again from r to q

(without altering stack)

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Situation can also look like this. Stack moves up and down but

eventually comes back to being empty. The first symbol that is pushed

must match the last symbol popped.

Direction 2: Assume we have a pushdown automata, show how to construct the CFG that describes it.

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Direction 2: Assume we have a pushdown automata, show how to construct the CFG that describes it.

Let’s start constructing the grammar from the PDA.

The variables represent moving from each pair of

states p,q by using, but not altering the stack (empty

stack to empty stack).

start variable will simply be a dummy variable that

represents getting from the start state to the accept

state

Variables of 𝐺 are 𝐴𝑝𝑞 𝑝, 𝑞 ∈ 𝑄}

Start variable is 𝐴𝑞0 𝑞𝑎𝑐𝑐𝑒𝑝𝑡

Given a PDA 𝑃 = 𝑄, 𝛴, 𝛤, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , construct grammar 𝐺:

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Direction 2: Assume we have a pushdown automata, show how to construct the CFG that describes it.

This next rule covers every pair of states the push

and pop the same symbol (e.g., first step is to push a

symbol t, then a bunch of stuff happens, then

eventually we pop off the t).

Variables of 𝐺 are 𝐴𝑝𝑞 𝑝, 𝑞 ∈ 𝑄}

Start variable is 𝐴𝑞0 𝑞𝑎𝑐𝑐𝑒𝑝𝑡

For each 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝑄, 𝑡 ∈ Γ, and 𝑎, 𝑏 ∈ Σ𝜖, if 𝛿 𝑝, 𝑎, 𝜖 contains (𝑟, 𝑡) and

𝛿 𝑠, 𝑏, 𝑡 contains 𝑞, 𝜖 , put the rule 𝑨𝒑𝒒 → 𝒂𝑨𝒓𝒔𝒃 into 𝑮

Given a PDA 𝑃 = 𝑄, 𝛴, 𝛤, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , construct grammar 𝐺:

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Direction 2: Assume we have a pushdown automata, show how to construct the CFG that describes it.

This rule covers all cases where you empty the stack

twice (at least). Once from state p to r and again

from state r to q.

Variables of 𝐺 are 𝐴𝑝𝑞 𝑝, 𝑞 ∈ 𝑄}

Start variable is 𝐴𝑞0 𝑞𝑎𝑐𝑐𝑒𝑝𝑡

For each 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝑄, 𝑡 ∈ Γ, and 𝑎, 𝑏 ∈ Σ𝜖, if 𝛿 𝑝, 𝑎, 𝜖 contains (𝑟, 𝑡) and

𝛿 𝑠, 𝑏, 𝑡 contains 𝑞, 𝜖 , put the rule 𝐴𝑝𝑞 → 𝑎𝐴𝑟𝑠𝑏 into 𝐺

For each 𝑝, 𝑞, 𝑟 ∈ 𝑄, put the rule 𝐴𝑝𝑞 → 𝐴𝑝𝑟𝐴𝑟𝑞 in 𝐺

Given a PDA 𝑃 = 𝑄, 𝛴, 𝛤, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , construct grammar 𝐺:

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Direction 2: Assume we have a pushdown automata, show how to construct the CFG that describes it.

Last rule, base case! Nothing needs to happen when

going from a state p to itself.

Variables of 𝐺 are 𝐴𝑝𝑞 𝑝, 𝑞 ∈ 𝑄}

Start variable is 𝐴𝑞0 𝑞𝑎𝑐𝑐𝑒𝑝𝑡

For each 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝑄, 𝑡 ∈ Γ, and 𝑎, 𝑏 ∈ Σ𝜖, if 𝛿 𝑝, 𝑎, 𝜖 contains (𝑟, 𝑡) and

𝛿 𝑠, 𝑏, 𝑡 contains 𝑞, 𝜖 , put the rule 𝐴𝑝𝑞 → 𝑎𝐴𝑟𝑠𝑏 into 𝐺

For each 𝑝, 𝑞, 𝑟 ∈ 𝑄, put the rule 𝐴𝑝𝑞 → 𝐴𝑝𝑟𝐴𝑟𝑞 in 𝐺

Finally, for each 𝑝 ∈ 𝑄, put the rule 𝐴𝑝𝑝 → 𝜖 in 𝐺

Given a PDA 𝑃 = 𝑄, 𝛴, 𝛤, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , construct grammar 𝐺:

YOU KNOW THE DRILL!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Direction 2: Assume we have a pushdown automata, show how to construct the CFG that describes it.

So, is it the case that if a string X accepts

in the original automata P, then this

grammar will definition accept it (and

similarly for rejection)?

Yes, let’s verbally describe why.

Variables of 𝐺 are 𝐴𝑝𝑞 𝑝, 𝑞 ∈ 𝑄}

Start variable is 𝐴𝑞0 𝑞𝑎𝑐𝑐𝑒𝑝𝑡

For each 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝑄, 𝑡 ∈ Γ, and 𝑎, 𝑏 ∈ Σ𝜖, if 𝛿 𝑝, 𝑎, 𝜖 contains (𝑟, 𝑡) and

𝛿 𝑠, 𝑏, 𝑡 contains 𝑞, 𝜖 , put the rule 𝐴𝑝𝑞 → 𝑎𝐴𝑟𝑠𝑏 into 𝐺

For each 𝑝, 𝑞, 𝑟 ∈ 𝑄, put the rule 𝐴𝑝𝑞 → 𝐴𝑝𝑟𝐴𝑟𝑞 in 𝐺

Finally, for each 𝑝 ∈ 𝑄, put the rule 𝐴𝑝𝑝 → 𝜖 in 𝐺

Given a PDA 𝑃 = 𝑄, 𝛴, 𝛤, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , construct grammar 𝐺:

EXAMPLE: 0𝑛1𝑛 ȁ 𝑛 ≥ 1

Q1 Q2

Q3Q4

𝜖, 𝜖 → $

𝜖, $ → 𝜖

0, 𝜖 → 0

1,0 → 𝜖

1,0 → 𝜖

Q4

Stack is empty when we start and stop, good!

Only one start and accept state, good!

All transitions only push, pop but not both. Yep!

EXAMPLE: 0𝑛1𝑛 ȁ 𝑛 ≥ 1

Q1 Q2

Q3Q4

𝜖, 𝜖 → $

𝜖, $ → 𝜖

0, 𝜖 → 0

1,0 → 𝜖

1,0 → 𝜖

Q4

WE DID IT!

Theorem: A language L is context-free if and only if some pushdown automata

recognizes it

Great! So, pushdown automata and context-free grammars are equivalent in their

descriptive power, and they are MORE powerful than regular languages / NFAs

PART 3: NON-CONTEXT-FREE LANGUAGES

PUMPING LEMMA FOR CFL

If 𝐴 is a context-free language, then there is a number 𝑝 (the pumping

length) where, if 𝑠 is any string such that 𝑠 ∈ 𝐴 and 𝑠 ≥ 𝑝, then 𝑠

may be divided into five pieces 𝑠 = 𝑢𝑣𝑥𝑦𝑧 satisfying the following:

1. for each 𝑖 ≥ 0, 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐴

2. 𝑣𝑦 > 0

3. 𝑣𝑥𝑦 ≤ 𝑝

The pumping lemma for context-free languages:

PUMPING LEMMA FOR CFL

If 𝐴 is a context-free language, then there is a number 𝑝 (the pumping length) where, if 𝑠 is any string

such that 𝑠 ∈ 𝐴 and 𝑠 ≥ 𝑝, then 𝑠 may be divided into five pieces 𝑠 = 𝑢𝑣𝑥𝑦𝑧 satisfying the following:

1. for each 𝑖 ≥ 0, 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐴

2. 𝑣𝑦 > 0

3. 𝑣𝑥𝑦 ≤ 𝑝

The pumping lemma for context-free languages:

Here, R is a variable that is “re-used”Pump down to remove v and y
Pump up to add v and y

PUMPING LEMMA FOR CFL

Regarding the pumping length p

p needs to be set so that the

length of uvxyz is long

enough to guarantee that

some variable R is “re-used”.

How to choose p? Given the number

of variables and the number of

characters that can be substituted for

each, we can calculate a tree height

that guarantees some variable occurs

twice (pigeonhole principle).

Then, find a length for uvxyz that

guarantees that tree height. Your book

shows the exact calculation if you are

interested.

Condition 3 of the lemma says that the substring vxy is less than or

equal to the pumping length p

EXAMPLE!

Proof: Use the pumping lemma to show that 𝐵 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is NOT

context-free

EXAMPLE!

Proof: Use the pumping lemma to show that 𝐵 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is NOT

context-free

Step 1: Pumping lemma states that there is some length string p, such that any string of that

length can be pumped.

Step 2: Given p, we choose the string 𝒂𝒑𝒃𝒑𝒄𝒑, we then show that this string cannot be

pumped.

EXAMPLE!

Proof: Use the pumping lemma to show that 𝐵 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is NOT

context-free

Step 1: Pumping lemma states that there is some length string p, such that any string of that

length can be pumped.

Step 2: Given p, we choose the string 𝒂𝒑𝒃𝒑𝒄𝒑, we then show that this string cannot be

pumped.

Case 1: divide string such that v and y

both contain only one character each.

Contradiction: There are 3 different

letters so when pumped, there won’t

be equal numbers of a, b, and c

Case 2: divide string such that at least

one of v and y contain two characters.

Contradiction: When pumped, the letters

will be out of order (e.g., aabb

becomes aabbaabb)

EXAMPLE!

Proof: Use the pumping lemma to show that D= 𝑤𝑤 𝑤 ∈ 0,1 ∗} is NOT

context-free

EXAMPLE!

Step 1: Pumping lemma states that there is some length string p, such that any string of that

length can be pumped.

Step 2: Given p, we choose the string 𝟎𝒑𝟏𝒑𝟎𝒑𝟏𝒑, we then show that this string cannot be

pumped.

Proof: Use the pumping lemma to show that D= 𝑤𝑤 𝑤 ∈ 0,1 ∗} is NOT

context-free

ABOUT DETERMINISM VERSUS NON-DETERMINISM
WITH PUSHDOWN AUTOMATA

WHAT WE KNOW ABOUT COMPUTATION SO FAR

Regular

Languages =

Regular

Expressions =

DFA = NFA

Context-Free Languages

= NPDAs

NPDA is non-deterministic pushdown

automata. Remember that everything

we’ve done so far is allowing non-

determinism.

With regular languages, determinism

and non-determinism models were

equivalently descriptive.

WHAT WE KNOW ABOUT COMPUTATION SO FAR

Regular

Languages =

Regular

Expressions =

DFA = NFA

Deterministic Context-Free

Languages = DPDAs

Non-determinism is a MORE powerful

descriptor within context-free

languages. There are some languages

that determinism cannot recognize (see

book for details)

This means that programming language

designers need to be careful because

non-deterministic machines cannot

currently be built. Need to stay in this

middle section here

Non-Deterministic CFGs =

NPDAs

CONCLUSIONS

WHAT YOU LEARNED IN THIS DECK!

Using another pumping lemma, we can find languages that are non-

context free. Next we will see the most general computational model:

The Turing Machine!

These are all equivalent in their expressive power.

Pushdown Automata

NFA w/ a stack. Can recognize exactly

the context-free languages

Context-Free Languages:

A Class of languages that are more

expressive than regular languages

Context-Free Grammar:

A “string” description of a context-free

language (by definition)

	Slide 1: Context-Free Languages
	Slide 2: Goals!
	Slide 3: Part 1: Reminder of where we are / Chomsky Hierarchy
	Slide 4: Types of Problems
	Slide 5: Chomsky Hierarchy
	Slide 6: Overview of This Deck
	Slide 7: Part 2: Context-Free Grammars
	Slide 8: Introduction: What is a Context-Free Grammar
	Slide 9: Quick Aside: Finite Automata and Regular Languages
	Slide 10: Quick Aside: Finite Automata and Regular Languages
	Slide 11: Formal Definition of a CFG
	Slide 12: Some Simple Examples
	Slide 13: Some Simple Examples
	Slide 14: Example Context-Free Grammar
	Slide 15: Example Context-Free Grammar
	Slide 16: Another Example CFG
	Slide 17: Another Example CFG
	Slide 18: Challenge
	Slide 21: Part 2: Pushdown Automata
	Slide 22: Pushdown Automata
	Slide 23: Pushdown Automata
	Slide 24: Pushdown Automata
	Slide 25: Pushdown Automata
	Slide 26: Pushdown Automata
	Slide 27: Formal Definition Pushdown Automata
	Slide 28: Try it on your own!
	Slide 29: Equivalence with Context-Free Grammars
	Slide 30: You know the drill!
	Slide 31: You know the drill!
	Slide 32: You know the drill!
	Slide 33: You know the drill!
	Slide 34: You know the drill!
	Slide 35: You know the drill!
	Slide 36: You know the drill!
	Slide 37: You know the drill!
	Slide 38: You know the drill!
	Slide 39: You know the drill!
	Slide 40: You know the drill!
	Slide 41: You know the drill!
	Slide 42: You know the drill!
	Slide 43: You know the drill!
	Slide 44: You know the drill!
	Slide 45: Example: 0 to the n , 1 to the n , , vertical bar , n greater than or equal to 1
	Slide 46: Example: 0 to the n , 1 to the n , , vertical bar , n greater than or equal to 1
	Slide 47: We did it!
	Slide 48: Part 3: Non-Context-Free Languages
	Slide 49: Pumping Lemma for CFL
	Slide 50: Pumping Lemma for CFL
	Slide 51: Pumping Lemma for CFL
	Slide 52: Example!
	Slide 53: Example!
	Slide 54: Example!
	Slide 55: Example!
	Slide 56: Example!
	Slide 57: About Determinism versus Non-Determinism with Pushdown Automata
	Slide 58: What we know about Computation so far
	Slide 59: What we know about Computation so far
	Slide 60: Conclusions
	Slide 61: What you Learned in this Deck!

