
FINITE AUTOMATA AND REGULAR
LANGUAGES

DISCRETE MATHEMATICS AND THEORY 2

MARK FLORYAN

GOALS!

1. Quick definition of languages…a different way to think about functions AND

introduction to the Chomsky Hierarchy.

2. Our first model of computation, the finite automata!! How does it work? How

do we prove things about what functions it can compute? Etc…

3. Are there equivalent models / expressions that are equivalent to the finite

automata? How do we identify functions that can NOT be computed by these?

PART 1: FUNCTIONS, LANGUAGES, AND THE
CHOMSKY HIERARCHY

TYPES OF PROBLEMS

Name Decision Problem Function Language

XOR Are there an odd

number of 1’s?
𝑓 𝑏 = ቊ

0 number of 1s is even
1 number of 1s is 𝑜𝑑𝑑

ሼ
ȁ

𝑏
∈ Σ∗ 𝑏 has and odd number of 1s}

Majority Are there more 1s

than 0s?
𝑓 𝑏 = ቊ

0 more 0s than 1s
1 more 1s than 0s

𝑏 ∈ Σ∗ 𝑏 has more 1s than 0s}

Thing you want

to compute

Does it have have a

property?

𝑓 𝑏
= 1 𝑖𝑓 𝑖𝑡 𝑑𝑜𝑒𝑠 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦

ሼ𝑏 ∈ Σ∗ȁ𝑏 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦}

Is1 Is the string exactly

“1”?

𝑓 𝑏 = 1 𝑖𝑓 𝑏 == 1 ሼ1}

Is_infinite Is the length of the

string infinite?

𝑓 𝑏 = 0 ∅

CHOMSKY HIERARCHY

A description of

languages and their

relationship to one

another

Each language has a

computational model

that recognizes it

In this deck, we will see the regular

languages and the machines that recognize

them

PART 2: FINITE AUTOMATA AND REGULAR
LANGUAGES

INTRODUCTION: WHAT IS A FINITE STATE MACHINE

FINITE STATE MACHINES

• First model of computation that we will look at in detail.

• Features:

• Has a VERY limited amount of memory. What can we compute with such limited memory?

• What input / output does this machine support? Does this matter?

• Can we find at least one function that this machine CANNOT compute?

DETERMINISTIC FINITE AUTOMATA (DFA)

Accepts Input as a string

Example Input: AABCDAABCCC

S1*

S2 S3

S4

A

B,C,D

B,C,D B,C,D

A,B,C,D

A

A

One state is the

special start state

Machine has some number of states (4 in this example) in can be in. Machine is only

in one state at a time. This is the ONLY variable / memory DFAs have

One or more states

are considered

accepting states

When one character

of input is read,

machine transitions

to a new state

DETERMINISTIC FINITE AUTOMATA (DFA)

Accepts Input as a string

Example Input: AABCDAABCCC

S1*

S2 S3

S4

A

B,C,D

B,C,D B,C,D

A,B,C,D

A

A

Let’s step through the execution of this machine

DETERMINISTIC FINITE AUTOMATA (DFA)

Accepts Input as a string

Example Input: AABCDAABCCC

S1*

S2 S3

S4

A

B,C,D

B,C,D B,C,D

A,B,C,D

A

A

The formal definition of a deterministic finite

state machine is:

A finite automaton is a 5-tuple

(𝑄, Σ, 𝛿, 𝑞0, 𝐹)

Where:

𝑄 is a finite set called the states

Σ is a finite set called the alphabet

𝛿: 𝑄 𝑥 Σ → 𝑄 is the transition function

𝑞0 ∈ 𝑄 is the start state

𝐹 ⊆ 𝑄 is a set of accept states (or final states)

ACTIVITY: DESIGN A STATE MACHINE

• Imaging an automatic sliding door at, say, a grocery store.

Front Pad Front Pad

State 0

No click has

begun

State 1

Mouse went

down

beginning a

click

State 2

Mouse went

up completing

a click

State 3

Mouse back

down, starting

a double click

State 4

Mouse up

completing

double click

Hover state = 1

&&

Mouse button

down

Hover state = 1

&&

Mouse button up

Hover state = 0

&&

Mouse button up

200ms passed, no double click started

Register a single click

Hover state = 1

Mouse button down

Register Double

Click

Hover state = 1

Mouse button up

Hover State = 0

&&

Mouse button up

Hover State 0

No hover

Hover State 1

Currently

hovering

Mouse moves over

button

Mouse moves

away from button

ANOTHER EXAMPLE:
HOW BUTTONS WORK

MORE PRACTICE WITH DFA

PRACTICE PROBLEM 1

What set of strings does this

machine recognize?

S1 S3S2

1

List out the formal description

(5-tuple) for this machine

0

1

0

0,1

PRACTICE PROBLEM 2

Design a DFA that accepts any binary string that contains “001” as a substring anywhere

(possibly multiple times) in the string. The DFA should reject if the string does not contain

a contiguous 001 anywhere in the string.

Examples:

011110101011111 REJECT

111110010101011 ACCEPT

FORMAL DEFINITION OF COMPUTATION WITH DFA

FORMAL DEFINITION OF COMPUTATION

M accepts the string w if a sequence of states 𝑟0, 𝑟1, 𝑟2, … , 𝑟𝑛 ∈ 𝑄 exists such that:

1. 𝑟0 = 𝑞0

2. 𝛿 𝑟𝑖, 𝑤𝑖+1 = 𝑟𝑖+1 for 𝑖 = 0, … , 𝑛 − 1

3. 𝑟𝑛 ∈ 𝐹

Formal definition of computation on a DFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) on

input string 𝑤 = 𝑤1𝑤2𝑤3 … 𝑤𝑛 and each 𝑤𝑖 ∈ Σ

NON-DETERMINISTIC FINITE STATE AUTOMATA
(NFA)

MOTIVATING QUESTION

Does adding a new feature / functionality to our machine / computational

model increase the number of functions (or languages) it can recognize?

EXAMPLE: 2-DFA

Imagine a DFA with the following extra feature:

“The machine works exactly as a DFA we have already

described, except it can be in up to two states at once.”

Notes:

2 start states

Each state transitions after reading each symbol

Machine accepts in either state is in final state at end

S1

S2

0

S3

0

1

1

0, 1

S4

S5

1

S6

1

0

0

0, 1

What does this machine do on

input: 000100

In general, what language does this machine recognize?

2-DFA VS. DFA?

Which of the following do you think is true?

Possible Theorem 1: A 2-DFA is equivalent in computational power as a traditional DFA

Possible Theorem 2: A 2-DFA has more computational power than a DFA

In other words: For any language L, there exists a DFA that accepts it iff there exists a 2-DFA that accepts it (note the if

and only if here)

In other words: There exists at least one language L that can be recognized by a 2-DFA but cannot be accepted by any

DFA

2-DFA VS. DFA?

Possible Theorem 1: A 2-DFA is equivalent in computational power as a traditional DFA

In other words: For any language L, there exists a DFA that accepts it iff there exists a 2-DFA that accepts it (note the if

and only if here)

Suppose we think

this one is true

(spoiler: it is!)

How do we prove this?

Prove both directions of the claim:

1. If a DFA exists that accepts L, then a 2-DFA exists that accepts L (easy one)

2. If a 2-DFA exists that accepts L, then a DFA exists that accepts L (a little harder)

Basic idea: If one type of machine accepts a language L, can you simulate that machine

with the other type?

2-DFA VS. DFA?

Possible Theorem 1: A 2-DFA is equivalent in computational power as a traditional DFA

Consider direction 1 first:

If a DFA exists that recognizes some language L, then a 2-DFA exists too!

Given a DFA that accepts

an arbitrary language L

(left), describe the process

for turning this into an

equivalent 2-DFA (right)

S1

S2

0

S3

0

1

1

S1

S2

0

S3

0

1

1

S4

0, 1

Add a dummy state that

the 2-DFA will also be

in at all. times, doesn’t

affect the language L

that gets recognized

0, 10, 1

2-DFA VS. DFA?

Possible Theorem 1: A 2-DFA is equivalent in computational power as a traditional DFA

Consider direction 1 first:

If a DFA exists that recognizes some language L, then a 2-DFA exists too!

Here is the formal version

of this process

Consider an arbitrary DFA D that

recognizes an arbitrary language L:

𝐷 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

Construct a 2-DFA D’ as such:

𝐷′ = (𝑄′, Σ, 𝛿′, 𝑞0, 𝑞𝑛 , 𝐹)

Such that:

𝑄′ = 𝑄 ∪ 𝑞𝑛

𝛿′ = 𝛿 ∪ ሼ(𝑞𝑛 x Σ) → 𝑞𝑛}

Prove this works: Because D’ fulfills all the requirements of a 2-DFA, and executes the exact same way D does (except

for being in the dummy second state at all times). Thus, any string that D accepts will also be accepted by D’

2-DFA VS. DFA?

Possible Theorem 1: A 2-DFA is equivalent in computational power as a traditional DFA

Consider direction 2 next:

If a 2-DFA exists that recognizes some language L, then a DFA exists too!

Given a 2-DFA that accepts

an arbitrary language L

(left), describe the process

for turning this into an

equivalent DFA (right)

S1

S2

0

S3

0

1

1
0, 1

S4

S5

1

S6

1

0

0
0, 1

S1,

S4

S1,

S6

S1,

S5

S2,

S4

S2,

S5

S2,

S6

S3,

S4

S3,

S6

S3,

S5

0

1

0

1

0

0, 1

0

1

1 1 1

1
1

0 0

0 0

2-DFA VS. DFA?

S1

S2

0

S3

0

1

1
0, 1

S4

S5

1

S6

1

0

0
0, 1

S1,

S4

S1,

S6

S1,

S5

S2,

S4

S2,

S5

S2,

S6

S3,

S4

S3,

S6

S3,

S5

0

1

0

1

0

0, 1

0

1

1 1 1

1
1

0 0

0 0

One start state

(combination of

two start states in

original DFA

Each state represents

a combination of

states the 2-DFA can

be in

State is final if ONE

of the two was final in

the original DFA

Transitions show how

one symbol leads to a

new combination of 2

states in original DFA

Prove that it works: The new DFA will always accept if the original 2-DFA does because each state in the new DFA represents

exactly one pair of states of the original 2-DFA. Thus, with a traditional DFA, we can simulate exactly what the 2-DFA would

have done and accept if and only if the original 2-DFA accepts.

2-DFA VS. DFA?

Possible Theorem 1: A 2-DFA is equivalent in computational power as a traditional DFA

Consider direction 2 next:

Here is the formal version of the process

Consider an arbitrary 2-DFA D that

recognizes an arbitrary language L:

𝐷 = (𝑄, Σ, 𝛿, ሼ𝑞0, 𝑞1}, 𝐹)

Construct a DFA D’ as such:

𝐷′ = (𝑄′, Σ, 𝛿′, 𝑞0,1, 𝐹′)

Such that:

𝑄′ = 𝑞𝑖,𝑗 𝑞𝑖 , 𝑞𝑗 ∈ 𝑄}

𝛿′ = (𝑞𝑖,𝑗, 𝜎 → 𝑞𝑖′,𝑗′ 𝜎 ∈ Σ, 𝑞𝑖, 𝜎 → 𝑞𝑖′ ∈ 𝛿, 𝑞𝑗, 𝜎 → 𝑞𝑗′ ∈ 𝛿

𝐹′ = 𝑞𝑖,𝑗 𝑞𝑖 ∈ 𝐹 ∨ 𝑞𝑗 ∈ 𝐹}

2-DFA VS. DFA?

Possible Theorem 1: A 2-DFA is equivalent in computational power as a traditional DFA

Thus, it is proven!!!!

NON-DETERMINISM

Let us now look at a different, but similar functionality we can add to the

DFA: Non-Determinism

Non-Determinism: Is a feature of computational models that allows them

to exist in multiple states at one time. The machine can be in any number

of it’s states simultaneously.

Note that this will be an extension of the 2-DFA. Effectively, an n-DFA

where the DFA has n states. The main difference being that an NFA does

not HAVE to be in multiple states.

NON-DETERMINISM: INTUITION

NON-DETERMINISM DEFINITION AND EXAMPLE

A Non-Deterministic Finite Automaton (NFA) is

a DFA than can be in multiple states at once.

Formally:

A non-deterministic finite automaton is a 5-tuple

(𝑄, Σ, 𝛿, 𝑞0, 𝐹) where:

1. 𝑄 is a finite set of states

2. Σ is a finite alphabet

3. 𝛿: 𝑄 𝑥 Σ𝜖 → 𝒫(𝑄) is the transition function

4. 𝑞0 ∈ 𝑄 is the start state

5. 𝐹 ⊆ 𝑄 is the set of accept states

S1

0,1

S4S2 S3
1 0, 𝜖 1

0,1

Σ𝜖 is the alphabet plus epsilon

(i.e., Σ𝜖 = Σ ∪ ሼ𝜖})

𝒫(𝑄) is the power set of Q

NON-DETERMINISM DEFINITION AND EXAMPLE

A Non-Deterministic Finite Automaton (NFA) is

a DFA than can be in multiple states at once.

Formally:

A non-deterministic finite automaton is a 5-tuple

(𝑄, Σ, 𝛿, 𝑞0, 𝐹) where:

1. 𝑄 is a finite set of states

2. Σ is a finite alphabet

3. 𝛿: (𝑄 𝑥 Σ𝜖) → 𝑃(𝑄) is the transition function

4. 𝑞0 ∈ 𝑄 is the start state

5. 𝐹 ⊆ 𝑄 is the set of accept states

S1

0,1

S4S2 S3
1 0, 𝜖 1

0,1

𝜖 is called an empty transition or an

epsilon transition. Machine splits

into multiple copies of itself (is in

multiple states at once) and the

copy transitions to the new state

without reading input.

Note that S1 has two transitions for input character

1. This means if a 1 is read, two copies of the

machine will split off. One transitions to S1 and the

other transitions to S2

NON-DETERMINISM DEFINITION AND EXAMPLE

S1

0,1

S4S2 S3
1 0, 𝜖 1

0,1

Let’s run this machine on some

sample input.

Inputs to try:

0000

1101

11

10

10001

In general, what language does this

machine recognize?

Answer: Strings that contain 11 or

101 somewhere in them.

NON-DETERMINISM EXAMPLE

Practice: Develop an NFA that accepts the following language:

Let A be the language consisting of all strings over 0,1 ∗ containing a 1 in the third position from the end

(e.g., 000100 is in A but 0011 is not).

NON-DETERMINISM EXAMPLE

Practice: Develop an NFA that accepts the following language:

Let A be the language consisting of all strings over 0,1 ∗ containing a 1 in the third position from the end

(e.g., 000100 is in A but 0011 is not).

S1

0,1

S4S2 S3
1 0,1 0,1

NON-DETERMINISM EXAMPLE

Practice: Develop an NFA that accepts the following language:

Let A be the language consisting of all strings over 0,1 ∗ containing a 1 in the third position from the end

(e.g., 000100 is in A but 0011 is not).

FYI: Here is a DFA that accepts A.

Oftentimes, using an NFA is much simpler

NON-DETERMINISM EXAMPLE

Practice: Develop an NFA that accepts the following language:

Let A be the language consisting of all strings over 0,1 ∗ ending in 101 or ending in 010

EQUIVALENCE OF NFA AND DFA?

Which of the following do you think is true?

Possible Theorem 1: An NFA is equivalent in computational power to a DFA

Possible Theorem 2: An NFA has more computational power than a DFA

In other words: For any language L, there exists a DFA that accepts it iff there exists an NFA that accepts it (note the if

and only if here)

In other words: There exists at least one language L that can be recognized by an NFA but cannot be accepted by any

DFA

NFA VS. DFA?

Possible Theorem 1: An NFA is equivalent in computational power to a DFA

In other words: For any language L, there exists a DFA that accepts it iff there exists an NFA that accepts it (note the if

and only if here)

Suppose we think

this one is true

(spoiler: it is!)

How do we prove this?

Prove both directions of the claim:

1. If a DFA exists that accepts L, then an NFA exists that accepts L (easy one)

2. If an NFA exists that accepts L, then a DFA exists that accepts L (harder)

Basic idea: If one type of machine accepts a language L, can you simulate that machine

with the other type? It is the same (similar) proof as the 2-DFA example!!!

NFA VS. DFA?

Possible Theorem 1: An NFA is equivalent in computational power to a DFA

Consider direction 1 first:

If a DFA exists that recognizes some language L, then an NFA exists too!

Given a DFA that accepts

an arbitrary language L

(left), describe the process

for turning this into an

equivalent NFA (right)

S1

S2

0

S3

0

1

1

S1

S2

0

S3

0

1

1

Trivial, a DFA is a valid

NFA by definition, so

don’t actually need to

change anything!!

0, 10, 1

NFA VS. DFA?

Possible Theorem 1: An NFA is equivalent in computational power to a DFA

Consider direction 2 next:

If an NFA exists that recognizes some language L, then a DFA exists that also accepts L!

Given an NFA that accepts

an arbitrary language L

(left), describe the process

for turning this into an

equivalent DFA (right)

States are every possible subset

of states in the original NFA.

When character is read from input, we

transition to a new subset of states the NFA was

in

NFA VS. DFA?

Possible Theorem 1: An NFA is equivalent in computational power to a DFA

Consider direction 2 next:

If an NFA exists that recognizes some language L, then a DFA exists that also accepts L!

Given an NFA that accepts

an arbitrary language L

(left), describe the process

for turning this into an

equivalent DFA (right)

Some state combinations from previous slide are impossible (have no

incoming edges), so they can be removed. This is the simpler version

NFA VS. DFA?

Possible Theorem 1: An NFA is equivalent in computational power to a DFA

Consider direction 2 next:

Here is the formal version of the process

Consider an arbitrary NFA N that

recognizes an arbitrary language L:

𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

Construct a DFA D as such:

𝐷 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′)

Such that:

𝑄′ = 𝒫(𝑄)

𝛿′ = 𝑅 ∈ 𝑄′, 𝑎 ∈ Σ → 𝑞 ∈ 𝑄, 𝑟 ∈ 𝑅 𝑞 ∈ 𝐸(𝛿 𝑟, 𝑎)}

𝑞0
′ = 𝐸(𝑞0)

𝐹′ = 𝑅 ∈ 𝑄′ ∃𝑟∈𝑅 𝑟 ∈ 𝐹}

What is E() here? Given a set of states R, let E(R) be the set of states that we can

reach by traveling along epsilon transitions only, including the original states in the

return value.

NFA VS. DFA?

Theorem: An NFA is equivalent in computational power to a DFA

Thus, it is proven!!!!

NON-DETERMINISM SUMMARY

What did we learn in this section:

1. An NFA is a different type of machine that extends the functionality of a DFA

2. NFAs are often more convenient for recognizing languages because of the parallelism

3. NFAs and DFAs are equivalent in computational power

4. Do we know how to build an NFA in the real world? Kind of…

REGULAR LANGUAGES

MOTIVATING QUESTIONS

Ok, we have NFAs and DFAs (and they are equivalent in computational power). What is the

exact set of languages that these machines can recognize?

Can we find at least one language that NFAs and DFAs cannot recognize (spoiler: yes)? How

do we find one?

DEFINITION: REGULAR LANGUAGE

A language is called a regular language if there exists some DFA that recognizes it

…and by equivalence,

there exists an NFA that

recognizes it too!

This definition is a bit tautological

right? Don’t worry, it is a good

definition for now and we will analyze

what falls into this category and what

doesn’t soon.

PROPERTIES OF REGULAR LANGUAGES

A language is called a regular language if there exists some DFA that recognizes it

We are interested in the following (potential) properties of Regular Languages:

Let A and B be languages, we define the regular operations as follows:

𝐴 ∪ 𝐵 = 𝑥 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}

𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵}

𝐴∗ = 𝑥1𝑥2 … 𝑥𝑘 𝑘 ≥ 0 ∧ ∀𝑖 𝑥𝑖∈ 𝐴}

Union:

Concatenation:

Star:

CLOSURE REGULAR LANGUAGES

Suppose now that A and B are regular languages. What does it mean to say that regular languages are closed under Union?

𝐴 ∪ 𝐵 = 𝑥 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}

𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵}

𝐴∗ = 𝑥1𝑥2 … 𝑥𝑘 𝑘 ≥ 0 ∧ ∀𝑖 𝑥𝑖∈ 𝐴}

Union:

Concatenation:

Star:

Closure under some operation means that if

the inputs are both in a set, then the output is

also in that set. Are the regular languages

closed under union, concatenation, and star?

For example, regular languages are closed

under Union if the following is true:

If A and B are regular languages, then A

Union B is also a regular language

Suppose the regular languages ARE closed under these three

operations. What does that tell us about regular languages

and/or about how they can be constructed?

REG. LANGUAGES ARE CLOSED UNDER UNION

Theorem: The regular languages are closed under union

𝐴 ∪ 𝐵 = 𝑥 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}Union:

REG. LANGUAGES ARE CLOSED UNDER UNION

Theorem: The regular languages are closed under union

𝐴 ∪ 𝐵 = 𝑥 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}Union:

Claim: If A and B are regular, then A union B is regular

If A is regular,

then some DFA

M1 accepts it

If B is regular,

then some DFA

M2 accepts it

A1 A2

A3 A4A4

…

B1 B2

B4 A4B3

…

Proof: Given the DFAs for A and B (see left), construct a machine that accepts A union B (right)

See how easy the NFA makes things sometimes? Non-determinism allows us to

simply spawn two threads, each of which runs one of the original DFAs.

A1 A2

A3 A4A4

…
B1 B2

B4 A4B3

…

S

𝜖 𝜖

REG. LANGUAGES ARE CLOSED UNDER CONCATENATION

Theorem: The regular languages are closed under concatenation

Concatenation: 𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵}

REG. LANGUAGES ARE CLOSED UNDER CONCATENATION

Theorem: The regular languages are closed under concatenation

Concatenation: 𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵}

Claim: If A and B are regular, then A conc. B is regular Proof: Given the DFAs for A and B (see left), construct a machine that accepts A conc. B (right)

If A is regular,

then some DFA

M1 accepts it

If B is regular,

then some DFA

M2 accepts it

A1 A2

A3 A4A4

…

B1 B2

B4 A4B3

…

B1 B2

B4 A4B3

…
A1 A2

A3 A4

…

New NFA N

𝜖

Key idea: Add an epsilon transition from every final state in M1 to every start state in M2

REG. LANGUAGES ARE CLOSED UNDER STAR

Theorem: The regular languages are closed under star

Star: 𝐴∗ = 𝑥1𝑥2 … 𝑥𝑘 𝑘 ≥ 0 ∧ ∀𝑖 𝑥𝑖∈ 𝐴}

REG. LANGUAGES ARE CLOSED UNDER STAR

Theorem: The regular languages are closed under star

Star: 𝐴∗ = 𝑥1𝑥2 … 𝑥𝑘 𝑘 ≥ 0 ∧ ∀𝑖 𝑥𝑖∈ 𝐴}

Claim: If A is regular, then A* is regular Proof: Given the DFA for A (see left), construct a machine that accepts A * (right)

If A is regular,

then some DFA

M1 accepts it

Key idea: Add new start state (to handle empty string case), then run M1 as before. Anytime

we hit a final state of M1, epsilon transition to M1’s old start state (because a new string in

language A might be coming up next)

A1 A2

A4A4

…

A4A3

New NFA N

𝜖
A1 A2

A4A4

…

A4A3

A4S

𝜖𝜖

REGULAR LANGUAGES SUMMARY

What did we learn in this section:

1. A regular language is any language for which an NFA or DFA exists that recognizes it.

2. Regular languages are closed under Union, Concatenation, and Star (What does this mean for

building up regular languages from smaller ones?)

PART 3: REGULAR EXPRESSIONS AND NON-
REGULAR LANGUAGES

MOTIVATING QUESTIONS

Ok, NFA and DFAs both recognize regular languages. How can we succinctly express regular

languages using more natural expressions?

Can we prove that this new notation for expressing regular languages is in fact complete and

sound?

REGULAR EXPRESSIONS

5 + 3 𝑥 4

In arithmetic, we have operations that allow us to build up larger items in a set from smaller

ones. One example:

0 ∪ 1 0∗

Because of the closure properties we just proved, we should be able to build up regular

languages in a similar way. These expressions are called regular expressions.

This is the language of

binary strings that start

with a 0 or 1 and then

end in any number of 0s

MORE EXAMPLES OF REGULAR EXPRESSIONS

𝑅 = 0∗10∗
𝐿 𝑅 = ? ? ?

𝑅 = Σ∗1Σ∗
𝐿 𝑅 = ? ? ?

𝑅 = ΣΣ ∗
𝐿 𝑅 = ? ? ?

𝑅 = 0Σ∗0 ∪ 1Σ∗1 ∪ 0 ∪ 1 𝐿 𝑅 = ? ? ?

*Note that here the alphabet is Σ = ሼ0,1}

MORE EXAMPLES OF REGULAR EXPRESSIONS

𝑅 = 0∗10∗
𝐿 𝑅 = 𝑤 𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 1}

𝑅 = Σ∗1Σ∗
𝐿 𝑅 = 𝑤 𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 1}

𝑅 = ΣΣ ∗
𝐿 𝑅 = 𝑤 𝑤 𝑖𝑠 𝑎 𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑙𝑒𝑛𝑔𝑡ℎ}

𝑅 = 0Σ∗0 ∪ 1Σ∗1 ∪ 0 ∪ 1 𝐿 𝑅 = 𝑤 𝑤 𝑠𝑡𝑎𝑟𝑡𝑠 𝑎𝑛𝑑 𝑒𝑛𝑑𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟}

*Note that here the alphabet is Σ = ሼ0,1}

FORMAL DEFINITION OF REGULAR EXPRESSIONS

1. 𝑎 for some 𝑎 ∈ Σ

2. 𝜖

3. 𝜙

4. (𝑅1 ∪ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

5. (𝑅1 ∘ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

6. (𝑅1
∗), where 𝑅1 is a regular expression

We say that an expression R is a regular expression if R is…

1-3 are base cases. Regular

expression can be one character,

epsilon (the set containing only

the empty string), or the empty

set.

4-6 use the closed operations to build up larger

expressions from smaller ones

FORMAL DEFINITION OF REGULAR EXPRESSIONS

1. 𝑎 for some 𝑎 ∈ Σ

2. 𝜖

3. 𝜙

4. (𝑅1 ∪ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

5. (𝑅1 ∘ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

6. (𝑅1
∗), where 𝑅1 is a regular expression

We say that an expression R is a regular expression if R is…

Important Question:

Using this definition, can we build EVERY possible

regular expression? How can we formally express this

question and try to prove it?

FORMAL DEFINITION OF REGULAR EXPRESSIONS

1. 𝑎 for some 𝑎 ∈ Σ

2. 𝜖

3. 𝜙

4. (𝑅1 ∪ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

5. (𝑅1 ∘ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

6. (𝑅1
∗), where 𝑅1 is a regular expression

We say that an expression R is a regular expression if R is…

Important Question:

Using this definition, can we build EVERY possible

regular expression? How can we formally express this

question and try to prove it?

Possible Theorem: A language is regular (i.e., an NFA or DFA exists that accepts it) if and only if some regular

expression describes it.

Here is a formal

description of

this question

…and by extension, this means that finite automata and regular expressions are equivalently expressive (they can

describe the exact same set of functions.

REG. EXPRESSIONS TO FINITE AUTOMATA

Possible Theorem: A language is regular (i.e., an NFA or DFA exists that accepts it) if and only if some regular

expression describes it.

…and by extension, this means that finite automata and regular expressions are equivalently expressive (they can

describe the exact same set of functions.

Proof Overview:

Direction 1: If given a regular expression, then the language is regular

Strategy: Given a regular expression, show how to construct the NFA that is equivalent to it

Direction 2: If given a regular language (or DFA/NFA), then some regular expression describes it.

Strategy: Given an arbitrary DFA/NFA, describe the process for generating an equivalent reg. expression

REG. EXPRESSIONS TO FINITE AUTOMATA

Direction 1: If given a regular expression, then the language is regular

Strategy: Given a regular expression, show how to construct the NFA that is equivalent to it

1. 𝑎 for some 𝑎 ∈ Σ

2. 𝜖

3. 𝜙

4. (𝑅1 ∪ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

5. (𝑅1 ∘ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

6. (𝑅1
∗), where 𝑅1 is a regular expression

We say that an expression R is a regular expression if R is…

Proof by induction:

Cases 1-3 are the base cases

Inductive Hypothesis: Assume 𝑅1 and 𝑅2 are

regular expressions and have DFAs

Cases 4-6 are the inductive steps

REG. EXPRESSIONS TO FINITE AUTOMATA

Direction 1: If given a regular expression, then the language is regular

Strategy: Given a regular expression, show how to construct the NFA that is equivalent to it

1. 𝒂 for some 𝒂 ∈ 𝚺

2. 𝜖

3. 𝜙

4. (𝑅1 ∪ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

5. (𝑅1 ∘ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

6. (𝑅1
∗), where 𝑅1 is a regular expression

We say that an expression R is a regular expression if R is…

Proof by induction:

Base Case 1: NFA is below:

S1 S1S2
a

REG. EXPRESSIONS TO FINITE AUTOMATA

Direction 1: If given a regular expression, then the language is regular

Strategy: Given a regular expression, show how to construct the NFA that is equivalent to it

1. 𝑎 for some 𝑎 ∈ Σ

2. 𝝐

3. 𝜙

4. (𝑅1 ∪ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

5. (𝑅1 ∘ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

6. (𝑅1
∗), where 𝑅1 is a regular expression

We say that an expression R is a regular expression if R is…

Proof by induction:

Base Case 2: NFA is below:

S1S1

REG. EXPRESSIONS TO FINITE AUTOMATA

Direction 1: If given a regular expression, then the language is regular

Strategy: Given a regular expression, show how to construct the NFA that is equivalent to it

1. 𝑎 for some 𝑎 ∈ Σ

2. 𝜖

3. 𝝓

4. (𝑅1 ∪ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

5. (𝑅1 ∘ 𝑅2), where 𝑅1 and 𝑅2 are regular expressions

6. (𝑅1
∗), where 𝑅1 is a regular expression

We say that an expression R is a regular expression if R is…

Proof by induction:

Base Case 3: NFA is below:

S1

REG. EXPRESSIONS TO FINITE AUTOMATA

Direction 1: If given a regular expression, then the language is regular

Strategy: Given a regular expression, show how to construct the NFA that is equivalent to it

1. 𝑎 for some 𝑎 ∈ Σ

2. 𝜖

3. 𝜙

4. (𝑹𝟏 ∪ 𝑹𝟐), where 𝑹𝟏 and 𝑹𝟐 are regular expressions

5. (𝑹𝟏 ∘ 𝑹𝟐), where 𝑹𝟏 and 𝑹𝟐 are regular expressions

6. (𝑹𝟏
∗), where 𝑹𝟏 is a regular expression

We say that an expression R is a regular expression if R is… Inductive Hypothesis:

Assume that 𝑅1 and 𝑅2 are regular

languages and have at least one DFA/NFA

that recognizes them each.

Inductive Step:

Use 𝑅1 and 𝑅2 to construct cases 4-6 in

exactly the same we did to prove closure for

regular languages. Will not repeat here.

Thus, it is proven in one direction. All regular expressions are also a regular language (and thus have at least one

DFA that recognizes them)

REG. EXPRESSIONS TO FINITE AUTOMATA

Direction 1: If given a regular expression, then the language is regular

Strategy: Given a regular expression, show how to construct the NFA that is equivalent to it

Example conversion of

𝑎𝑏 ∪ 𝑎 ∗ to help with intuition.

Remember that an example is

not a proof, even if it helps with

your understanding.

REG. EXPRESSIONS TO FINITE AUTOMATA

Direction 2: If given a regular language (or DFA/NFA), then some regular expression describes it.

Strategy: Given an arbitrary DFA/NFA, describe the process for generating an equivalent reg. expression

This direction is much harder, so we will provide an overview

Given an NFA, need to

convert it into an

equivalent regular

expression

Convert to a GNFA (an

NFA with regular

expressions as

transitions)

Make GNFA smaller one

state at a time until there

is only a start and final

state (one transition)

The one transition in the

GNFA is the regular

expression we need

REG. EXPRESSIONS TO FINITE AUTOMATA

Direction 2: If given a regular language (or DFA/NFA), then some regular expression describes it.

Strategy: Given an arbitrary DFA/NFA, describe the process for generating an equivalent reg. expression

Given an NFA, need to

convert it into an

equivalent regular

expression

Convert to a GNFA (an

NFA with regular

expressions as

transitions)

A Generalized NFA (GNFA) is an NFA that allows for patterns of strings as

inputs instead of just once character as inputs (can read multiple symbols at

once and then transition. Also:

1. Is a complete graph (there is a transition from every node to every

other except:

2. Start node (only one allowed) has no incoming edges

3. Final node (only one allowed) has no outgoing edges

REG. EXPRESSIONS TO FINITE AUTOMATA

Direction 2: If given a regular language (or DFA/NFA), then some regular expression describes it.

Strategy: Given an arbitrary DFA/NFA, describe the process for generating an equivalent reg. expression

Given an NFA, need to

convert it into an

equivalent regular

expression

Convert to a GNFA (an

NFA with regular

expressions as

transitions)

To convert a generic NFA into a GNFA, simply:

1.Add dummy start node with epsilon transition to old start node

2.Add dummy final node with epsilon transitions from all final

nodes in NFA

3. For any pair of nodes with no connection, add one with null set

as transition requirement (will never be used)

4. If any pair of nodes have multiple transitions, combine them into

one where the transition is now the Union of the two (or more)

old labels.

REG. EXPRESSIONS TO FINITE AUTOMATA

Direction 2: If given a regular language (or DFA/NFA), then some regular expression describes it.

Strategy: Given an arbitrary DFA/NFA, describe the process for generating an equivalent reg. expression

Convert to a GNFA (an

NFA with regular

expressions as

transitions)

Make GNFA smaller one

state at a time until there

is only a start and final

state (one transition)

Process: Given a state you want remove (𝑞𝑟𝑖𝑝)

every pair of any two other states that you will

not remove (𝑞𝑖, 𝑞𝑗), change the transition from

𝑞𝑖 to 𝑞𝑗 to:

𝑅1 𝑅2
∗ 𝑅3 ∪ (𝑅4)

**See diagram for definitions of 𝑅1 through 𝑅4

**Repeat this process until there are

only two states left (start and final

state).

REG. EXPRESSIONS TO FINITE AUTOMATA

Direction 2: If given a regular language (or DFA/NFA), then some regular expression describes it.

Strategy: Given an arbitrary DFA/NFA, describe the process for generating an equivalent reg. expression

Make GNFA smaller one

state at a time until there

is only a start and final

state (one transition)

The one transition in the

GNFA is the regular

expression we need

Once there is only one state left, the one

transition label IS the regular expression

that is equivalent to the original NFA.

REG. EXPRESSIONS TO FINITE AUTOMATA

Direction 2: If given a regular language (or DFA/NFA), then some regular expression describes it.

Strategy: Given an arbitrary DFA/NFA, describe the process for generating an equivalent reg. expression

SUMMARY SO FAR!!!

Finite Automata: First computation model.

Limited memory (just one state and input)

DFAs are equivalent to NFAs

Regular Languages:

Class of languages DFA/NFA can

recognize

Regular Expressions:

A different but equivalent way to express

the regular languages

These are all equivalent in their expressive power…and we proved it!

Just one last thing to do…

Can we find languages that are not

regular??

FINDING NON-REGULAR LANGUAGES

MOTIVATING QUESTIONS

Can we find at least one non-regular language? What seems to be the limiting factor that

prevents a DFA/NFA from recognizing it?

Do we have a good mechanism for proving a language is not regular?

TRY IT!!

Can you come up with a simple language that is not regular?

HINT: Think about what a DFA/NFA

does not have / cannot do and try to

exploit it. What does a DFA have very

limited amount of…

TRY IT!!

L = 0𝑛1𝑛 𝑛 ≥ 0}

Can you write a DFA/NFA that

recognizes this? If not, why?

WHAT ABOUT THESE TWO?

C = 𝑤 𝑤 ℎ𝑎𝑠 𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑟 0𝑠 𝑎𝑛𝑑 1𝑠}

D = 𝑤 𝑤 ℎ𝑎𝑠 𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑟 01 𝑎𝑛𝑑 10 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔𝑠}

WHAT ABOUT THESE TWO?

C = 𝑤 𝑤 ℎ𝑎𝑠 𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑟 0𝑠 𝑎𝑛𝑑 1𝑠}

D = 𝑤 𝑤 ℎ𝑎𝑠 𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑟 01 𝑎𝑛𝑑 10 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔𝑠}

This one is NOT regular

Surprisingly, this one IS

regular

The point here is that sometimes we cannot

rely on intuition alone. We need a

mathematical proof to be SURE our intuition

is correct.

THE PUMPING LEMMA
The pumping lemma for regular languages is a technique for proving that a language is NOT regular. It relies

on the idea that certain substrings of input must be repeated in order for a DFA to continue to run.

Consider the DFA M (to the

right). The string x gets us from

state q1 to q9 (possibly with

states in between).

The string y gets us from q9, through other states possibly,

and eventually back to q9. The string z gets us from

state q9 eventually to

final state q13

So…in this case, notice that the

string y can be pumped (repeated)

over and over and still be accepted

by M.

Any string of the form:

𝑥𝑦∗𝑧

Will be accepted

THE PUMPING LEMMA
The pumping lemma for regular languages is a technique for proving that a language is NOT regular. It relies

on the idea that certain substrings of input must be repeated in order for a DFA to continue to run.

So…in this case, notice that the

string y can be pumped (repeated)

over and over and still be accepted

by M.

Any string of the form:

𝑥𝑦∗𝑧

Will be accepted

Important Observation: The string y (that can be pumped) is not guaranteed to exist for all accepted strings. They must

be long enough that it is guaranteed that at least one state in the DFA was used multiple times (e.g., if the string is

longer than the number of states in the DFA, then some string y is guaranteed to exist).

THE PUMPING LEMMA
The pumping lemma for regular languages is a technique for proving that a language is NOT regular. It relies

on the idea that certain substrings of input must be repeated in order for a DFA to continue to run.

Pumping Lemma:

If 𝐴 is a regular language, then there is a number 𝑝

(called the pumping length) where, if 𝑠 is any string in

𝐴 of length at least 𝑝, then 𝑠 may be divided into

three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying the following

conditions:

1. for each 𝑖 ≥ 0, 𝑥𝑦𝑖𝑧 ∈ 𝐴

2. 𝑦 > 0

3. 𝑥𝑦 ≤ 𝑝

FYI, p is going to be the number of states in the theoretical DFA that accepts

the language A. Any string of length p or greater is guaranteed to have a

repeated state within the first p characters of input

THE PUMPING LEMMA

Example 1: Let’s show the following language is NOT regular:

𝐵 = 0𝑛1𝑛 𝑛 ≥ 0}

Pumping Lemma:

If 𝐴 is a regular language, then there is a number 𝑝

(called the pumping length) where, if 𝑠 is any string in

𝐴 of length at least 𝑝, then 𝑠 may be divided into

three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying the following

conditions:

1. for each 𝑖 ≥ 0, 𝑥𝑦𝑖𝑧 ∈ 𝐴

2. 𝑦 > 0

3. 𝑥𝑦 ≤ 𝑝

Proof overview (Proof by Contradiction):

1. Assume that language B is regular!

2. Select a string s’ that is in language B and is long enough.

Because of the pumping lemma we should be able to split

it, find a string y, and pump that string y.

3. Show that there is no way to pump s’ (every way we try to

divide it up is not pumpable)

4. Contradiction: Language is not regular because we found a

string s’ that cannot be pumped

THE PUMPING LEMMA

Example 1: Let’s show the following language is NOT regular:

𝐵 = 0𝑛1𝑛 𝑛 ≥ 0}

Pumping Lemma:

If 𝐴 is a regular language, then there is a number 𝑝

(called the pumping length) where, if 𝑠 is any string in

𝐴 of length at least 𝑝, then 𝑠 may be divided into

three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying the following

conditions:

1. for each 𝑖 ≥ 0, 𝑥𝑦𝑖𝑧 ∈ 𝐴

2. 𝑦 > 0

3. 𝑥𝑦 ≤ 𝑝

Proof overview (Proof by Contradiction):

1. Assume that language B is regular!

2. Select a string s’ that is in language B. Because of the

pumping lemma we should be able to split it, find a string

y, and pump that string y.

Step 1: Just assume B is regular (DONE!)

Step 2: Select 𝑠′ = 0𝑝1𝑝

**Note that p must exist by pumping lemma!

THE PUMPING LEMMA

Example 1: Let’s show the following language is NOT regular:

𝐵 = 0𝑛1𝑛 𝑛 ≥ 0}

Pumping Lemma:

If 𝐴 is a regular language, then there is a number 𝑝

(called the pumping length) where, if 𝑠 is any string in

𝐴 of length at least 𝑝, then 𝑠 may be divided into

three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying the following

conditions:

1. for each 𝑖 ≥ 0, 𝑥𝑦𝑖𝑧 ∈ 𝐴

2. 𝑦 > 0

3. 𝑥𝑦 ≤ 𝑝

Proof overview (Proof by Contradiction):

3. Show that there is no way to pump s’ (every way we try to

divide it up is not pumpable)

We selected 𝑠′ = 0𝑝1𝑝

So we want to divide it such that 𝑠′ = 𝑥𝑦𝑧

Three cases:

1. y contains only 0s

2. y contains some 0s and some 1s (e.g., 00001111111)

3. y contains all 1s

None of these three cases lead to valid pumping. Cases 1 and 3 will lead to more 0s or 1s in the string respectively. Case 2

(if pumped) will lead to the format of the string being invalid (e.g., 00110011). Proof complete!!

THE PUMPING LEMMA

Example 2: Let’s show the following language is NOT regular:

𝐶 = 𝑤 𝑤 ℎ𝑎𝑠 𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 0𝑠 𝑎𝑛𝑑 1𝑠}

Pumping Lemma:

If 𝐴 is a regular language, then there is a number 𝑝

(called the pumping length) where, if 𝑠 is any string in

𝐴 of length at least 𝑝, then 𝑠 may be divided into

three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying the following

conditions:

1. for each 𝑖 ≥ 0, 𝑥𝑦𝑖𝑧 ∈ 𝐴

2. 𝑦 > 0

3. 𝑥𝑦 ≤ 𝑝

Let’s do this one on the board together!

THE PUMPING LEMMA

Example 3: Let’s show the following language is NOT regular:

𝐶 = 0𝑖1𝑗 𝑖 > 𝑗}

Pumping Lemma:

If 𝐴 is a regular language, then there is a number 𝑝

(called the pumping length) where, if 𝑠 is any string in

𝐴 of length at least 𝑝, then 𝑠 may be divided into

three pieces, 𝑠 = 𝑥𝑦𝑧 satisfying the following

conditions:

1. for each 𝑖 ≥ 0, 𝑥𝑦𝑖𝑧 ∈ 𝐴

2. 𝑦 > 0

3. 𝑥𝑦 ≤ 𝑝

Let’s do this one on the board together!

CONCLUSIONS

WHAT YOU LEARNED IN THIS DECK!

Finite Automata: First computation model.

Limited memory (just one state and input)

DFAs are equivalent to NFAs

Regular Languages:

Class of languages DFA/NFA can

recognize

Regular Expressions:

A different but equivalent way to express

the regular languages

These are all equivalent in their expressive power…and we proved it!

Using the pumping lemma, we can find languages that are non-regular.

We will need an updated computational model to handle these. Next

time we will see a model that adds memory to our machines to increase

the functions (languages) that can be computed.

	Slide 1: Finite Automata and Regular Languages
	Slide 2: Goals!
	Slide 3: Part 1: Functions, Languages, and the Chomsky Hierarchy
	Slide 4: Types of Problems
	Slide 5: Chomsky Hierarchy
	Slide 6: Part 2: Finite Automata And Regular Languages
	Slide 7: Introduction: What is a finite State Machine
	Slide 8: Finite State Machines
	Slide 9: Deterministic Finite Automata (DFA)
	Slide 10: Deterministic Finite Automata (DFA)
	Slide 11: Deterministic Finite Automata (DFA)
	Slide 12: Activity: Design a State Machine
	Slide 13: Another Example: How Buttons Work
	Slide 14: More Practice with DFA
	Slide 15: Practice Problem 1
	Slide 16: Practice Problem 2
	Slide 17: Formal Definition of Computation with DFA
	Slide 18: Formal Definition of computation
	Slide 19: Non-Deterministic Finite State Automata (NFA)
	Slide 20: Motivating Question
	Slide 21: Example: 2-DFA
	Slide 22: 2-DFA vs. DFA?
	Slide 23: 2-DFA vs. DFA?
	Slide 24: 2-DFA vs. DFA?
	Slide 25: 2-DFA vs. DFA?
	Slide 26: 2-DFA vs. DFA?
	Slide 27: 2-DFA vs. DFA?
	Slide 28: 2-DFA vs. DFA?
	Slide 29: 2-DFA vs. DFA?
	Slide 30: Non-Determinism
	Slide 31: Non-Determinism: Intuition
	Slide 32: Non-Determinism Definition And Example
	Slide 33: Non-Determinism Definition And Example
	Slide 34: Non-Determinism Definition And Example
	Slide 35: Non-Determinism Example
	Slide 36: Non-Determinism Example
	Slide 37: Non-Determinism Example
	Slide 38: Non-Determinism Example
	Slide 39: Equivalence of NFA and DFA?
	Slide 40: NFA vs. DFA?
	Slide 41: NFA vs. DFA?
	Slide 42: NFA vs. DFA?
	Slide 43: NFA vs. DFA?
	Slide 44: NFA vs. DFA?
	Slide 45: NFA vs. DFA?
	Slide 46: Non-Determinism Summary
	Slide 47: Regular Languages
	Slide 48: Motivating Questions
	Slide 49: Definition: Regular Language
	Slide 50: Properties of Regular Languages
	Slide 51: Closure Regular Languages
	Slide 52: Reg. Languages are closed under union
	Slide 53: Reg. Languages are closed under union
	Slide 54: Reg. Languages are closed under Concatenation
	Slide 55: Reg. Languages are closed under Concatenation
	Slide 56: Reg. Languages are closed under Star
	Slide 57: Reg. Languages are closed under Star
	Slide 58: Regular Languages Summary
	Slide 59: Part 3: Regular Expressions and Non-Regular Languages
	Slide 60: Motivating Questions
	Slide 61: Regular Expressions
	Slide 62: More Examples Of Regular Expressions
	Slide 63: More Examples Of Regular Expressions
	Slide 64: Formal Definition of Regular Expressions
	Slide 65: Formal Definition of Regular Expressions
	Slide 66: Formal Definition of Regular Expressions
	Slide 67: Reg. Expressions To Finite Automata
	Slide 68: Reg. Expressions To Finite Automata
	Slide 69: Reg. Expressions To Finite Automata
	Slide 70: Reg. Expressions To Finite Automata
	Slide 71: Reg. Expressions To Finite Automata
	Slide 72: Reg. Expressions To Finite Automata
	Slide 73: Reg. Expressions To Finite Automata
	Slide 74: Reg. Expressions To Finite Automata
	Slide 75: Reg. Expressions To Finite Automata
	Slide 76: Reg. Expressions To Finite Automata
	Slide 77: Reg. Expressions To Finite Automata
	Slide 78: Reg. Expressions To Finite Automata
	Slide 79: Reg. Expressions To Finite Automata
	Slide 80: Summary so Far!!!
	Slide 81: Finding Non-Regular Languages
	Slide 82: Motivating Questions
	Slide 83: Try it!!
	Slide 84: Try it!!
	Slide 85: What about these two?
	Slide 86: What about these two?
	Slide 87: The Pumping Lemma
	Slide 88: The Pumping Lemma
	Slide 89: The Pumping Lemma
	Slide 90: The Pumping Lemma
	Slide 91: The Pumping Lemma
	Slide 92: The Pumping Lemma
	Slide 93: The Pumping Lemma
	Slide 94: The Pumping Lemma
	Slide 95: Conclusions
	Slide 96: What you Learned in this Deck!

