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GOALS!

1. Quick review of functions!

2. How do we use functions to compare the sizes of sets? Why might this be 

useful as we move forward talking about computation?

3. Do all infinite sets have the same size? What can this tell us (already) about 

the theory of computation?



PART 1: QUICK REVIEW OF FUNCTIONS



DEFINING FUNCTIONS

Function: a “mapping” from input to output
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• 𝑓: 𝐷 → 𝐶

• Function 𝑓 maps elements from the set 𝐷 to an element from the set 𝐶

• 𝐷: the domain of 𝑓

• 𝐶: the co-domain of 𝑓

• Range/image of 𝑓: {𝑓 𝑑 : 𝑑 ∈ 𝐷}

• The elements of 𝐶 that are “mapped to” by something

Finite function: a function with a finite domain

𝑓: 𝐷 → 𝐶 is a finite function if 𝐷 is finite. Otherwise it’s 

an infinite function



INJECTIVE FUNCTIONS
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One-to-one (injective)

𝑥 ≠ 𝑦 ⇒ 𝑓 𝑥 ≠ 𝑓 𝑦
Different inputs yield different outputs

No two inputs share an output

INJECTIVE FUNCTION

Domain Co-Domain

NON-INJECTIVE  FUNCTION

Co-DomainDomain



PROPERTIES OF FUNCTIONS

• One-to-one (injective)

• 𝑥 ≠ 𝑦 ⇒ 𝑓 𝑥 ≠ 𝑓 𝑦

• Onto (surjective)

• ∀𝑐 ∈ 𝐶, ∃𝑑 ∈ 𝐷 ∶ 𝑓 𝑑 = 𝑐

• Everything in 𝐶 is the output of something in 𝑑
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ONTO, SURJECTIVE FUNCTIONS

SURJECTIVE FUNCTION NON-SURJECTIVE  FUNCTION
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Everything in Co-Domain “receives” something

Domain Co-Domain Co-DomainDomain



PROPERTIES OF FUNCTIONS

• One-to-one (injective)

• 𝑥 ≠ 𝑦 ⇒ 𝑓 𝑥 ≠ 𝑓 𝑦

• Onto (surjective)

• ∀𝑐 ∈ 𝐶, ∃𝑑 ∈ 𝐷 ∶ 𝑓 𝑑 = 𝑐

• One-to-one Correspondence (bijective)

• Both one-to-one and surjective

• Everything in 𝐶 is mapped to by a unique element in 𝐷

• All elements from domain and co-domain are perfectly “partnered”
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BIJECTIVE FUNCTIONS
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BIJECTIVE FUNCTION

Domain Co-Domain

Because Onto:

Everything in Co-Domain “receives” something

Because 1-1:

Nothing in Co-Domain “receives” two things

Conclusion:

Things in the Domain exactly “partner” with things in Co-Domain



PART 2: USING FUNCTIONS TO COMPARE SIZES OF 
SETS



COMPARING CARDINALITIES WITH FUNCTIONS

• Let 𝑓 be a finite function

•  𝑓: 𝐷 → 𝐶

• Consider the following possible characteristics of f

• Injective

• Surjective

• Bijective
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Each of these will tell us something 

about the relative sizes of D and C



1-1, INJECTIVE FUNCTIONS
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Nothing in Co-Domain “receives” two things

**Only possible if  𝑪 ≥ |𝑫|

INJECTIVE FUNCTION

Domain Co-Domain

Thus, showing there 

exists an injective 

function from D to C 

is one way to show 

that 𝐶 ≥ |𝐷|



PIGEONHOLE PRINCIPLE

• Every pigeon is sitting in a hole

• There are more pigeons than there are holes

• At least one hole has at least two pigeons
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ONTO, SURJECTIVE FUNCTIONS

14

Everything in Co-Domain “receives” something

**Only possible if  𝑫 ≥ |𝑪|

SURJECTIVE FUNCTION

Domain Co-Domain

Thus, showing there 

exists a surjective 

function from D to C 

is one way to show 

that 𝐷 ≥ |𝐶|



BIJECTIVE FUNCTIONS
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BIJECTIVE FUNCTION

Domain Co-Domain

Because Onto:

Everything in Co-Domain 

“receives” something

𝐷 ≥ |𝐶| 

Because 1-1:

Nothing in Co-Domain 

“receives” two things

𝐶 ≥ |𝐷| 

Conclusion:

Things in the Domain exactly “partner” with things in Co-Domain

**Note: This means that 𝑫 = |𝑪| 



COMPARING CARDINALITIES WITH FUNCTIONS

• To show 𝑆 ≥ |𝑇|

• Find a surjective function 𝑓: 𝑆 → 𝑇

• Find an injective function 𝑓: 𝑇 → 𝑆

• To show 𝑆 = |𝑇|

• Find a bijective function 𝑓: 𝑆 𝑇

• Find both a surjective function 𝑓1: 𝑆 → 𝑇 and an injective function 𝑓2: 𝑆 → 𝑇
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PRACTICE: 0,1 𝑛 = 2𝑛 VIA BIJECTION
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Theorem: 0,1 𝑛 = 2𝑛

How do we show this? Any ideas?



0,1 𝑛 = 2𝑛 VIA BIJECTION

• Proof idea:

• Find a bijection 𝑓𝑛: 0,1 𝑛 𝑥 ∈ ℕ|𝑥 < 2𝑛

• Given 𝑏 ∈ 0,1 𝑛, what is 𝑓𝑛 𝑏 ∈ 𝑥 ∈ ℕ|𝑥 < 2𝑛 ?

• 𝑓𝑛 𝑏 = σ𝑖=0
𝑛−1 𝑏𝑖 ⋅ 2𝑖

• E.g. 1101 = 1 ⋅ 20 + 0 ⋅ 21 + 1 ⋅ 22 + 1 ⋅ 23 = 13

• In other words, let each item b map to the natural number 

corresponding to the binary representation!!
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CALCULATING BINARY OF 13

• 13 is odd, so last bit is 1

• 𝑥 =
13

2
= 6

• 6 is even, so next bit is 0

• 𝑥 =
6

2
= 3

• 3 is odd, so next bit is 1

• 𝑥 =
3

2
= 1

• 1 is odd, so next bit is 1
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1 1 0 1𝑏 =

…and fill with the 

last n-4 zeros to 

ensure there are n 

digits



PRACTICE: 0,1 𝑛 = 2𝑛 VIA BIJECTION
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Theorem: 0,1 𝑛 = 2𝑛

Is the mapping we provided 

injective (Every input has unique 

output)? Why?

Is the mapping we provided surjective (Every 

value less than 2𝑛 is covered)? Why?

> Take two unique inputs B1 and B2

> B1 and B2 differ in at least one digit

> Thus, values differ if  no other way to 

produce the exact value of that bit

> Consider case where B1 and B2 differ in 

multiple bits, but sum of difference of sum 

bits equals difference in another bit.

> This is impossible because sum of powers 

of two can never equal another power of 2.

> Thus B1 and B2 map to two different 

outputs. Function is injective.

> Take an arbitrary natural num. less than 2𝑛

> Convert it into a bitstring as per the function on 

previous slide.

> This bitstring must use fewer than n bits because 2𝑛 

exactly would use the nth bit (indexing from 0).

> Thus, every number 0 through 2𝑛 − 1 is mapped 

onto by some bitstring.



PRACTICE 2
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Theorem: For a finite set 𝑆, 𝒫 𝑆 = 2|𝑆|

How do we show this? Any ideas?



FOR A FINITE SET 𝑆, 𝒫 𝑆 = 2|𝑆|

• Find a function 𝑓: 𝒫 𝑆 0,1 |𝑆|

• Example: let 𝑆 = 1,2,3

• 𝒫 𝑆 = ∅, 1 , 2 , 3 , 1,2 , 1,3 , 2,3 , {1,2,3}

• 𝑓 1,2 = 110

• 𝑓 ∅ = 000

• Bijection: give each value of 𝑆 an index, for a particular subset of 

S, make the bit at that index 0 if it is absent, otherwise make it 1.
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WHY IS THIS A BIJECTION?

• Every string is mapped to by some subset of 𝑆

• Consider that we have some string 𝑏 ∈ 0,1 |𝑆|. We can find the subset of 𝑆 called 

𝐵 such that 𝑓 𝐵 = 𝑏 by including the value associated with bit 𝑖 in 𝑏 provided that bit is 

1

Show that it’s injective

• Different subsets of 𝑆 result in different strings

• This holds because for two subsets of 𝑆, call them 𝑋 and 𝑌, if 𝑋 ≠ 𝑌 there must be some 

value 𝑎 ∈ 𝑆 such that 𝑎 ∈ 𝑋 ∧ (𝑎 ∉ 𝑌) or 𝑎 ∉ 𝑋 ∧ (𝑎 ∈ 𝑌). This means that 𝑓(𝑋) is 

different from 𝑓(𝑌) at the bit associated with element 𝑎.

Show that it’s surjective



PART 3: COMPARING SIZES OF INFINITE SETS



INFINITE CARDINALITY

How do we compare the sizes of two infinite sets? Wait…do they not 

automatically have the same size?
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INFINITE CARDINALITY

We say that for (infinite) sets 𝐴 and 𝐵, that 𝐴 = |𝐵| if there is a 

bijection 𝑓: 𝐴 𝐵
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COUNTABILITY AND UNCOUNTABILITY

A set 𝑆 is countable if 𝑆 ≤ |ℕ|

If 𝑆 = |ℕ|, then 𝑆 is “countably infinite”
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A set 𝑆 is countable if there is an 

onto (surjective) function from ℕ 

to 𝑆

Otherwise a set is 

uncountable.



PRACTICE: SHOW THAT 0,1 ∗ = |ℕ|
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0,1 ∗ IS COUNTABLE

• Need to “represent” strings with naturals

• Idea: build a “list” of all strings, 

represent each string by its index in that 

list
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LISTING ALL STRINGS (BAD WAY)

𝑓𝑏𝑎𝑑: 0,1 ∗ → ℕ can be defined as follows:

𝑓𝑏𝑎𝑑 𝑠 = the number that 𝑠 represents

Why is this function not a bijection?
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LISTING ALL STRINGS

• 0,1 0 = ""

• 0,1 1 = 0,1

• 0,1 2 = 00,01,10,11

• 0,1 3 = {000,001,010,011,100,101,110,111}
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0

12

3 4 5 6

7 8 9 10 11 12 13 14

“”

0 1

00 01 10 11

000 001 010 011 100 101 110 111

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14



LISTING ALL STRINGS

Formulaic version:

𝑓 𝑤 ∈ 0,1 ∗ = 2|𝑤| − 1 + 𝑏(𝑤)

**Where b(w) is the integer value of the binary bitstring w 32

“”

0 1

00 01 10 11

000 001 010 011 100 101 110 111

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14



WHY IS THIS A BIJECTION?

• Injective: different strings 

map to different numbers:

• Different strings map to 

different nodes in the tree

• No two nodes in the tree 

have the same index

• Surjective: every number 

appears

•We listed them one by one 

and there are an infinite 

number of nodes.
33

“”

0 1

00 01 10 11

000 001 010 011 100 101 110 111

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14



DEMONSTRATE THAT EACH OF THE FOLLOWING IS 
COUNTABLE

• ℤ+ = ℕ ∖ 0

• {𝑛 ∈ ℕ|𝑛 is even}

• {𝑛 ∈ ℕ|𝑛 is odd}

• ℤ

• ℕ × ℕ

• ℚ
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PROOF: ℤ+ IS COUNTABLE

• 𝑓+: ℤ+ ℕ
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PROOF: {𝑛 ∈ ℕ|𝑛 IS EVEN} IS COUNTABLE

• 𝑓𝑒: {𝑛 ∈ ℕ|𝑛 is even} ℕ
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PROOF: {𝑛 ∈ ℕ|𝑛 IS ODD} IS COUNTABLE

• 𝑓0: {𝑛 ∈ ℕ|𝑛 is odd} ℕ
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ℤ IS COUNTABLE

• To build 𝑓𝑧: ℤ ℕ

• Idea: map natural numbers to evens, map negative numbers to odds

• 𝑓𝑧 𝑥 =

• 𝑓𝑒
−1(𝑥) If 𝑥 ∈ ℕ

• 𝑓𝑜
−1(−𝑥) if 𝑥 ∈ ℤ−

• Note that this means that if 𝐴 and 𝐵 are both countable then 𝐴 ∪ 𝐵 is 

also countable!
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ℕ × ℕ IS COUNTABLE

Thoughts on how to prove it?



0,0 0,1 0,2  0,3  0,4  0,5

1,0 1,1 1,2  1,3  1,4  1,5

2,0 2,1 2,2  2,3  2,4  2,5

3,0 3,1 3,2  3,3  3,4  3,5

4,0 4,1 4,2  4,3  4,4  4,5

ℕ × ℕ IS COUNTABLE
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…

…

…

…

…… … …… … …

0 1 2 3 4 5

0

1

2

3

4

ℕ

ℕ



ℚ IS COUNTABLE

• Idea: there is a surjective mapping from ℤ × ℤ+ to ℚ

• This one is left as an exercise (could be on homework or quiz)
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NUMBER OF PROGRAMS AS NUMBER OF 
FUNCTIONS



HOW MANY PYTHON/JAVA PROGRAMS?

• How do we represent Java/Python programs?

• How many things can we represent using that method?
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HOW MANY FUNCTIONS Σ∗ → Σ∗?

• Short answer: Too many!

• Uncountable 

• 𝑓 𝑓: Σ∗ → Σ∗ | > |ℕ|

• Conclusion: Some functions cannot be computed by any java/python program

• How to prove this?
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HOW TO SHOW SOMETHING IS UNCOUNTABLE?
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UNCOUNTABLY MANY FUNCTIONS

• If we show a subset of 𝑓 𝑓: Σ∗ → Σ∗} is uncountable, then 𝑓 𝑓: Σ∗ → Σ∗} 

is uncountable too

• Consider just the “yes/no” functions (decision problems): 

𝒇 𝒇: {𝟎, 𝟏}∗→ {𝟎, 𝟏}}
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𝒃 𝒇 𝒃

“” 1

0 0

1 0

00 1

01 1

10 1

11 1

000 0

001 0



GOAL: 𝑓: 0,1 ∗ → {0,1}  IS UNCOUNTABLE

• Each function can be represented by a single infinite 

bitstring : 0,1 ∞ is a simpler representation of f

• Show there is no onto mapping from ℕ to 0,1 ∞
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𝒃 𝒇 𝒃

“” 1

0 0

1 0

00 1

01 1

10 1

11 1

000 0

001 0

For example, this function can be fully described by the outputs only (the order 

of the inputs is fixed). So the right column (100111100…) fully describes this 

unique function



0,1 ∞ > |ℕ|

• Idea: 

• show there is no way to “list” all infinite length binary strings

• Any list of binary strings we could ever try will be leaving out elements of 0,1 ∞
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0,1 ∞ > |ℕ|
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𝑏0 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6

0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

2 1 0 1 0 1 0 1

3 1 1 0 1 1 0 1

4 1 0 1 1 0 1 0

5 1 0 0 1 1 1 0

6 0 0 0 1 1 1 1

…

0 1 0 0 1 0 0

Attempt at mapping ℕ to 

0,1 ∞ 

A string that our attempt 

missed

Derive by selecting each 𝑏𝑖 as the opposite of the 𝑏𝑖 

from row 𝑖



0,1 ∞ > |ℕ|
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𝑏0 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6

0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

2 1 0 1 0 1 0 1

3 1 1 0 1 1 0 1

4 1 0 1 1 0 1 0

5 1 0 0 1 1 1 0

6 0 0 0 1 1 1 1

…

0 1 0 0 1 0 0

Attempt at mapping ℕ to 

0,1 ∞ 

Take the bolded bits across the diagonal. Select a bitstring where each 

of these bits is flipped. In this example: 0100100…



OTHER COUNTABLE/UNCOUNTABLE SETS

• Countable sets:

• Integers

• Rational numbers

• Any finite set

• Uncountable Sets:

• Real numbers

• The power set of any infinite set
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CANTOR’S THEOREM

• For any set 𝑆, 𝑆 < |2𝑆|

• Even if 𝑆 is infinite!

• Idea: 

• 𝑆 ≤ |2𝑆| (why?)

• There cannot be a bijection between 𝑆 and 2𝑠

• Not going to prove
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CONCLUSION

• There are countably many strings

• And therefore binary strings, programs, etc.

• There are uncountably many functions

• Some functions can’t be implemented
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