
Solu
tio

n

CS 3120: Discrete Math and Theory II Page 1 of 3 Fall 2024

Complexity Theory

1. Show that if P = NP , then every language A ∈ P , except A = ∅ and A = Σ∗ is NP-Complete.

We assume that P = NP . This means that all problems in NP have a polynomial time algo-
rithm. Recall that our definition of NP-Complete requires polynomial time reductions.

So, take any arbitrary language A ∈ P that is not ∅ or Σ∗. This means that there is at least
one input that returns YES (let’s call it iy) and at least one input that returns NO (let’s call it in).
Now, to showA is NP-Complete, we need to show that every other problem in P can be reduced
to it in polynomial time. The reductions are simple. Intuitively, we are going to simply solve the
other problem as our ”reduction” and then output a trivial input for A depending on the result.
Given any other arbitrary problem B ∈ P , we reduce to A as follows. B has a polynomial time
solver. Run this solver on the input to B. If the solver says YES, then our reduction will output
iy. If the solver says NO, then output in. Thus, the reduction is obviously valid because it is
polynomial time, and it always outputs some string to A that will produce the same result.

We should address why this approach does NOT work with ∅ and Σ∗. This is because these
languages do not have at least one example of each possible output (∅ never says YES and Σ∗

never says NO). So, the reduction above doesn’t work because for an arbitrary problem B, there
are two possible outputs but anything the reduction produces will be put into a solver for ∅ or
Σ∗ that can only output one possible answer. Thus, the reduction does not exist for these two
trivial languages.

2. PSPACE is the complexity class containing all problems that can be solved using a Deter-
ministic Turing Machine that uses at most a polynomial amount of additional space (on the
tape). Prove that P ⊆ PSPACE. (Hint: Think about a generic problem in P, and the DTM that
decides it. Try to use more than a polynomial space with this machine given the allotted time.)

Suppose we have a problem in P . It must have a TM decider that runs in polynomial time
(polynomial steps of computation). A Turing Machine can only move its head one tape cell per
step of computation, so in a polynomial amount of steps, it can only reach a polynomal number
of tape cells to interact with. Thus, any TM that runs in polynomial time must use a polynomial
amount of space as well. Thus, P ⊆ PSPACE.

3. Recall the knapsack problem: Given a list of item values V = {v1, v2, ..., vn}, their respective
weights W = {w1, w2, ..., wn}, a target value k ∈ N, and a knapsack capacity W ∈ N, does
there exist a subset of items such that the sum of the values of the items is at least k and the
sum of the weight of the items is less than or equal to W . In other words, choose items I
such that

∑
i∈I(vi) ≥ k and

∑
i∈I(wi) ≤ W . Show that the knapsack problem is NP-Complete.

You can use any other known NP-Complete problem for your reduction (you might want
to look up other NP-Complete problems for this, but you don’t have to!).

Verification is simple: Given the list of items you steal, simply sum the weight and value and
make sure the two inequalities hold. This is trivially polynomial time (just a couple of loops and
if statements).
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For the reduction, the most natural choice is subset-sum. This problem states that given an array
A = {a1, a2, a3, ..., an} | ai ∈ N and a target t ∈ N, find a subset of values ofA that sum to t exactly.

The reduction is as follows: Given A and t, inputs to the subset problem, we generate an in-
stance of knapsack by:

• V = W = {a1, a2, ..., an}: The values of the items and the weights of the items are all just
the original list A from our subset sum instance.

• C = k = t: The capacity is the target value is the subset sum target value.

This reduction works because setting C = k means that the items that are stolen must exactly
fill the knapsack capacity in order to reach the intended value k. This can only happen when
that value and capacity is exactly t, providing a solution to the original subset sum instance.

4. You are working for Shoogle (A data company that definitely does not exist) and you are
given the following task from your boss: Shoogle is interested in investing in their employ-
ees by offering a large amount of professional development. They have collected a series of
workshops that each cover a subset of topics. For example, workshop 1 might cover machine
learning and databases, workshop 2 might cover machine learning and data mining, and
workshop 3 might cover advanced data structures (note that each workshop can cover mul-
tiple topics and there can be overlap across workshops). In addition, Shoogle wants to make
sure that over the course of the professional development workshops, at least one topic in
each sub-area of interest is represented. For example, they might want to make sure there is
at least one AI workshop (machine learning or reinforcement learning or neural networks,
etc.), at least one systems workshop (databases or cloud computing), etc.

So...the problem is this: Given the availability of the professional development workshop,
what topics each covers, and which areas need to be covered, can you devise a schedule
over multiple weeks that ensures that at least one topic in every area is covered by at least
one workshop?

Let’s formalize this a bit: The input contains multiple items:

• T : A list of individual topics that can be covered (e.g., machine learning).
• W = {w1, w2, ..., wm|wi ⊆ T}: A list of workshops, each of which is a subset of the

topics T that will be covered in that workshop. There are m workshops total.
• S = {s1, s2, ..., sn|si ⊆ W}: The schedule availability for each week. Each si is the

subset of workshops that can be scheduled in week i. There are n weeks.
• A = {a1, a2, ..., ap|ai ⊆ T}: The subject areas that need to be covered. Each area is a list

of Topics in that area.

You want to output Yes if there is some schedule of workshops over the n weeks such that
every area has at least one topic in T that is covered in at least one workshop.

This problem is NP-Complete. Prove it! For your reduction, use 3-SAT.
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Verification is simple, so I won’t bother explaining it in detail. Simply look at what work-
shops were scheduled and what topics they cover and loop to make sure every area has at least
one topic covered.

For the reduction, we use 3-SAT. Given a formula θ in 3-CNF form, we convert it into a schedul-
ing problem as follows:

• Create one topic for each variable in θ and its negation (e.g., T = {x1, x̄1, x2, x̄2, ...})

• Create one topic covered per workshop. W = {w1 = {x1}, w̄1 = {x̄1}, ...} This effectively
makes the list of topics and workshops the same, with a 1 to 1 correspondence.

• Create one area per clause in θ. For each clause, the three literals in that clause map to the
three topics / workshops within that area.

• Create the schedule so that each variable and its negation workshop are available each
week. For example, x1 annd x̄1 are available during week 1, x2 and x̄2 during week 2, etc.

This is a valid reduction because if the schedule can be done such that all areas are covered,
then the formula is satisfiable. The workshops that get scheduled correspond to the variables
that should be assigned to True, and since each area is associate with a clause, some variable
from each clause in θ was selected.


