
Gavin Crigger, Tao Groves, Matthew Lucio, Justin Park

CS 4501

Professor Floryan

28 April 2025

Eppstein’s Algorithm - Executive Summary

Introduction / Problem Statement:

​ Our project topic is on David Eppstein’s 1998 algorithm for finding k shortest paths in a

given graph from nodes s to t. Expanding on Dijkstra’s algorithm, this routine uses persistent

heaps and a unique reconstruction of the input graph to optimize down to the target runtime of

O(m + nlogn + k), where m represents number of edges, n represents number of vertices, and k

represents number of paths returned. The k-shortest-paths-problem has applications in network

routing (e.g., finding alternate routes), scheduling such as critical path computation in PERT

charts and many optimization problems solved by dynamic programming or more complicated

matrix searching techniques, such as the knapsack problem, sequence alignment in molecular

biology, construction of optimal inscribed polygons, and length-limited Huffman coding.

The naive approach takes Dijkstra’s algorithm, with a runtime of O(nlogn), and repeats it

k times to get an overall runtime of O(knlog(kn)). Eppstein’s algorithm significantly improves on

this approach by only running Dijkstra once, merging leftist heaps for amortized linear time, and

reconstructing is linear in path length. In comparison with Yen’s algorithm, Eppstein’s scales

better with larger k and requires less memory O(kn) vs O(m + n + k).

Overall Intuitive Approach / Solution:

​ A key concept that allows for Eppstein’s optimization of this problem is the sidetrack

edge. A sidetrack edge (u, v, w) is an edge not on the optimal path from vertex s to t, and its

sidetrack weight is equal to the optimal weight of the path from u to t plus the original weight of

edge (u, v) minus the optimal weight of the path from v to t. That is,

sidetrack(u, v, w) = du + w - dv

By using sidetrack edges, Eppstein’s algorithm addresses the key issue with the naive approach

to the k shortest paths problem that paths must be generated through multiple pops from a heap.

A graph of sidetrack edges can query an entire shortest path with one pop, as sidetrack edges can

be used alongside the optimal path from s to t to construct a new path. With this knowledge, the

next step in speeding up the approach to this problem is finding a way to best construct a

sidetrack graph such that both construction and heap popping is done quickly.

Implementation:

​ To implement Eppstein’s algorithm, we use a combination of Dijkstra’s algorithm and a

specialized heap structure to efficiently manage sidetrack edges. Dijkstra’s algorithm utilizes a

priority queue to efficiently manage the vertices being processed.

def dijkstra(g, src, n):

 dist = [INF] * n

 parent = [-1] * n

 dist[src] = 0

 heap = [(0, src)] # (distance, vertex)

 while heap:

 d_u, u = heapq.heappop(heap)

 if d_u != dist[u]:

 continue

 for w, v in g[u]:

 if d_u + w < dist[v]:

 dist[v] = d_u + w

 parent[v] = u

 heapq.heappush(heap, (dist[v], v))

 return dist, parent

To do this, we utilize a leftist heap (EHeap)to optimally select sidetrack edges. Each node stores

the null-path length (NPL), cost difference, target vertex, and pointers to its left and right

children. When inserting, we want the left side to be heavier (tree is left-skewed because the

right child always has the smaller NPL, so the path you recurse down during merges, the right

spine, is kept as short as possible) so that merge operations are faster (amortized O(log(n))).

class EHeap:

​ def __init__(self, rank, key, value, left, right):

self.rank = rank # null-path length (NPL) for leftist property

self.key = key # cost difference of this sidetrack

self.value = value # target vertex of this sidetrack edge

self.left = left # left child heap

self.right = right # right child heap

def insert(a, k, v):

"""Insert a (key=k, value=v) into heap 'a', returning new root. This is persistent:

original 'a' remains unchanged."""

Base case: empty heap or new key is smaller than root

if not a or k < a.key:

return EHeap(1, k, v, a, None)

Recursively insert into right subtree

l, r = a.left, EHeap.insert(a.right, k, v)

Ensure leftist property: left.rank >= right.rank

if not l or (r and r.rank > l.rank):

l, r = r, l

Update rank: 1 + rank of right child

new_rank = (r.rank + 1) if r else 1

Return new heap node preserving original key/value

return EHeap(new_rank, a.key, a.value, l, r)

def __lt__(self, other):

 # Needed for heapq but actual comparison is by external key

 return False

The actual algorithm uses these to compute the kth shortest path. It builds a reverse graph to run

reverse Dijkstra’s and build a shortest path tree to identify edges used/unused in the current path.

It then creates a leftist heap for each node consisting of edges not in the shortest path tree to store

the additional cost and children for merging. Once these are created, the paths are enumerated to

track the total path cost, path taken, and pointer to the heap node representing the alternate path

taken.

def eppstein_k_shortest_paths(g, src, dst, k, n):

 """

 Compute k shortest path costs from src to dst using Eppstein's algorithm.

 g: forward adjacency list

 src, dst: source and destination indices

 k: number of paths to return

 n: number of vertices

 Returns list of up to k path costs in non-decreasing order.

 """

 # Build reverse graph for backward Dijkstra

 revg = [[] for _ in range(n)]

 for u in range(n):

 for w, v in g[u]:

 revg[v].append((w, u))

 # Run Dijkstra from dst on reverse graph

 d, p = dijkstra(revg, dst, n)

 if d[src] == INF:

 # No route exists

 return []

 # Build shortest-path tree from parents

 tree = [[] for _ in range(n)]

 for u in range(n):

 if p[u] != -1:

 tree[p[u]].append(u)

 # h[u] will point to a heap of sidetrack edges for u

 h = [None] * n

 queue = [dst]

 for u in queue:

 seen_parent = False

 # Explore all outgoing edges of u in forward graph

 for w, v in g[u]:

 if d[v] == INF:

 continue # unreachable branch

 cost_diff = w + d[v] - d[u]

 # Skip the main tree edge once

 if not seen_parent and v == p[u] and cost_diff == 0:

 seen_parent = True

 else:

 # Insert this sidetrack into u's heap

 h[u] = EHeap.insert(h[u], cost_diff, v)

 # Propagate heap pointer to children in shortest-path tree

 for v in tree[u]:

 h[v] = h[u]

 queue.append(v)

 # The very shortest path cost

 result = [d[src]]

 # If no sidetracks available at src, only one path exists

 if not h[src]:

 return result

 # Min-heap of (total_cost, heap_node)

 pq = [(d[src] + h[src].key, h[src])]

 # Extract up to k paths

 while pq and len(result) < k:

 total_cost, node = heapq.heappop(pq)

 result.append(total_cost)

 # Follow the sidetrack chain: main branch first

 if h[node.value]:

 heapq.heappush(pq, (total_cost + h[node.value].key, h[node.value]))

 # Then the siblings in the heap

 if node.left:

 heapq.heappush(pq, (total_cost + node.left.key - node.key, node.left))

 if node.right:

 heapq.heappush(pq, (total_cost + node.right.key - node.key, node.right))

 return result

The key to Eppstein's efficiency is that it avoids recomputation of shortest paths by reusing the

SPT and efficiently merging by using leftist heaps. This design results in a highly efficient

method for determining multiple shortest paths in a graph.

Summary of Programming Challenge:

​ Our programming challenge reframes the k-shortest-paths problem as finding a single

path which happens to be the k-th shortest. Given an input graph, start and end nodes, and a

number of people to transport, along with the constraint that no two people may arrive at the

same time, the task is to return the path taken by the last person. Solving this problem requires

computing many shortest paths, usually more than 2 * k, since any paths found that are the same

length as the last one must be discarded. Because the runtime of a naive solution scales with k

log k, Eppstein’s algorithm is almost required for an efficient solution, even more so than for the

traditional k-shortest paths problem. Our intention is to demonstrate how much more efficient it

is to retrieve a large number of paths from Eppstein’s algorithm than by trying to compute them

one at a time.

​ There are two twists that separate our challenge from the traditional application of

Eppstein’s algorithm: all paths must have distinct lengths, and the algorithm must return the

actual path taken instead of the length alone. The first twist is trivial to account for but allows us

to more easily leverage the fast scaling of Eppstein’s algorithm with large values of k. The

second twist adds new and interesting layers to the computation, since the algorithm will now

have to keep track of all sidetrack edges taken while it runs, then use them along with the

Djikstra’s predecessor tree to build the full path. Doing this for all k paths would multiply the

runtime by a factor of n, which is why we only ask for a single path.

Key Ideas for Solving Programming Challenge:

Students will need to implement at least a simplified version of Eppstein’s algorithm,

which is already quite challenging on its own. They may choose to modify it to not even consider

multiple paths that share the same length, but can bypass that by simply discarding them as they

are encountered. The hardest challenge will be figuring out how to reconstruct the path itself.

Students will realize quickly that they are already examining graph edges as they go to compute

lengths and can store these edges somehow. Integrating this storage into the priority queue is

tricky but will yield a list of sidetrack edges taken. Students will then have to figure out that

these edges do not represent the full path, and do some additional tweaks to be able to traverse

the path in linear time.

These changes are interesting because they extend the traditional k-shortest-paths

problem into a more constrained and practical scenario, making the problem feel more relevant.

At the same time, neither takes a significant amount of extra code once you figure it out, and the

more complex change (path reconstruction) is even described in the original paper. The

complexity of the model solution is the same as Eppstein’s proper, O(m + n log n + k). Although

more than k paths need to be generated for a given problem, each possible path is only

considered once, and the runtime for the largest possible k value on a given graph can only be

larger by a constant factor. Computing the final path takes O(n) time, but is only done once, so it

does not affect the overall complexity.

Conclusion:

​ The implicit representation of paths through sidetrack edges is the key element of

Eppstein’s algorithm that allows it to tackle the k shortest paths problem in O(m + nlog(n) + k)

time. By re-orienting this problem in terms of a single terminal and deriving explicit paths from

sets of sidetrack edges, David Eppstein has created an algorithm that gets the next-best path at

every heap pop. This approach is crucial to solving the problem for large graphs, as naive

approaches with Dijkstra’s algorithm have a much higher asymptotic bound of O(knlog(kn)). Our

programming challenge is a modified approach to Eppstein’s algorithm, where students need to

return only the kth shortest path, but no two paths may end at the same time, requiring them to

learn how Eppstein’s reframes the problem with implicit representation to speed up and

reconstruct explicit paths.

