
Executive Summary

Gale-Shapley Algorithm

Artie Humphreys, Ridge Redding, Arthur Wu, Ayaan Rahman

April 24, 2025

1 Introduction

Modern marketplaces, ranging from the college admissions process to online dating platforms,

rely on matching algorithms that pair two equally sized sets of agents, each with ranked prefer-

ences over the other side. Beyond matching two sets of agents together, a core requirement that

should be considered when matching these two sets together should be stability. This means

that there are no two agents that prefer each other over their assigned partners. If stability

wasn’t met in these matches, it could lead to dissatisfaction, churn, or in more extreme situa-

tions, market failure. This is where the Gale-Shapley algorithm comes in.

While other alternative approaches exist for matching algorithms, they have their own respective

drawbacks. For instance, the brute-force enumeration of all n! matchings is exponential, becom-

ing infeasible beyond n ≈ 10. The greedy approach for pairing (“best available”) may terminate

quickly, but it can leave blocking pairs, resulting in outcomes unraveling. Gale-Shapley’s algo-

rithm successfully circumvents the aforementioned drawbacks with other matching algorithms

and produces a stable and optimal matching for the proposing side in O(n2) time. This can be

done using simple data structures such as arrays and hashmaps. In their 1962 paper, Gale and

Shapley proved that, for any two equally-sized sets with strict preference orderings, a stable

matching will always exist, meaning that the procedure will terminate in a finite number of

steps.

2 Approach

The approach of the Gale-Shapley algorithm can be simplified into three steps: a proposal,

holding, and potentially “trading up” if a better preference is found. There are two equally

sized sets of proposers and acceptors, and each agent ranks all members of the opposite set

based on preference. For the sake of simplicity, we will refer to these sets as Set A (proposers)

and Set B (acceptors). To begin, all of the proposers begin as free and available, allowing them

to be matched with an acceptor that they will propose to. Then, iterate while there exists a

proposer, let’s call it p, who is free and still has acceptors to approach. Within this iteration,

the free proposer p proposes to the most-preferred acceptor a on p’s list that hasn’t already

taken another proposer over them.

1



Acceptor a then has several choices: if a is free, they provisionally accept p. If a is engaged to

p′ but prefers a, they will trade up and cut off their matching with p′, who becomes free again.

Otherwise, a rejects p, who will later propose to the next-highest acceptor in their preference list.

The algorithm terminates when no proposer is free. All provisional engagements become fi-

nal, forming the matching.

3 Implementation

To implement the Gale–Shapley algorithm, first begin by reading the size n and the two n× n

preference tables (proposer and acceptor), then construct a rank-lookup matrix acceptorRank.

For every acceptor a and proposer p, the entry acceptorRank[a][p] stores the position of p in

a’s preference list. This preprocessing step, taking O(n2) time, where n is the number of agents

in both sets, ensures that future comparisons of acceptors’ preferences are done in constant time.

After the preferences are fixed, four arrays capture the evolving state of the matching. Boolean

arrays proposerFree and acceptorFreemark which agents are still unattached; matchForProposer[p]

records the acceptor currently paired with proposer p; the symmetric array matchForAcceptor[a]

records the proposer holding acceptor a. All four start in the obvious way (everyone is free, and

every match slot is set to −1).

The main loop will continually call the helper method findFreeProposer, which returns the

index of any free proposer or −1 when none remain, in which case we terminate. For the

chosen proposer p, the algorithm walks down p’s preference list from the top. If the first can-

didate acceptor a is still free, the pair (p,a) becomes engaged and both proposerFree[p] and

acceptorFree[a] change to false. If a already holds another proposer p2, the rank matrix tells

us instantly whether the acceptor prefers the new proposal. If acceptorRank[a][p] is smaller

than acceptorRank[a][p2], meaning the acceptor values p higher than p2, the acceptor “trades

up,” which makes p2 free again and updates the match arrays by setting matchForProposer[p2]

= −1 and matchForAcceptor[a] = p. If a rejects, p simply moves on to the next acceptor on

his list in the same iteration. Because p advances through their list of preference exactly once,

each ordered pair (proposer, acceptor) is examined at most once, resulting in a worst-case

time complexity of O(n2).

To help visualize this, imagine three proposers (p 0, p 1, p 2) and three acceptors (a 0, a 1, a 2).

Each proposer ranks the acceptors in the order a 0 → a 1 → a 2 while the acceptors’ lists dif-

fer. For instance, a 0 prefers p 1 → p 2 → p 0, a 1 prefers p 2 → p 0 → p 1, and a 2

prefers p 0 → p 1 → p 2. At the start of the algorithm, the boolean array proposerFree is

[true, true, true], so the helper findFreeProposer returns index 0. Proposer p 0 consults its

list and proposes to a 0, who is free; both proposerFree[0] and acceptorFree[0] change to

false and the match tables record (p 0, a 0). The algorithm then scans proposerFree again,

finds the next free proposer index 1, and processes that. Proposer p 1 also proposes to a 0

2



and, since a 0 prefers p 1 over its current match, trades up, so the pairing becomes (p 1, a 0),

freeing p 0. Scanning again finds p 2 free; it proposes to a 0 (rejected) then to a 1 (accepted).

Next, p 0 proposes to a 1; since a 1 prefers p 0, it trades up to (p 0, a 1), freeing p 2. Finally,

p 2 skips past a 0 and a 1 and is accepted by its third choice, a 2. No true entries remain in

proposerFree, so the loop terminates with a stable, proposer-optimal matching.

3.1 Psuedocode

The pseudocode for the algorithm can be found below:

4 Summary of Programming Challenge

One of the real-world applications of the Gale-Shapley algorithm is in residency matching pro-

grams. However, every year, thousands of graduating students don’t get matched to a specific

program. Partially, this is because there are less open spots than applicants. However, another

reason is that not every hospital and resident would be willing to match with each other, un-

like in the standard Gale-Shapley implementation. A specific applicant may not be willing to

relocate to a far program, and a specific program may not accept an applicant with limited

experience in their field. Additionally, real-life examples have the added complexity of a one-

to-many or proposer relationship. A hospital can host many residents, and the amount each

hospital accepts varies wildly.

3



This example and these two differences served as inspirations for our programming challenge

and twist. In our challenge, you play the part of an admissions officer who is evaluating the

class of tentatively admitted students. Your goal is to assign each student a lab such that no

pair of lab and student prefers each other over their current match. We hope that pairing two

groups like this should be an obvious use case of the Gale-Shapley algorithm. However, we

impose two twists to this problem. First, each lab can accept up to n students, which may not

be the same for every lab. Second, every lab may not be willing to admit every student, and

every student may not be willing to join every lab. If you find that a stable matching does not

exist because of this, you must report the labs and their number of unfilled slots so that the

university can look for students in that field.

In regards to our learning objectives for the challenge, one thing we wanted to stress was how

and why the algorithm terminates and in quadratic time. It can be hard to visualize this idea

through common pseudo-code or implementations, because they often employ an outer while

loop which runs until all proposers are taken, or not “free.” It may be easy to misinterpret this

as a non-polynomial runtime or a possible infinite loop. However, the key insight is that every

proposer only needs to propose at most n times before finding a stable match. This is because

a stable matching is proven to exist regardless of preferences, and if a proposer is rejected once

there is no use proposing again since the acceptors match at the second proposal cannot be

worse than before. Thus, if we propose at most n times for every proposer, it follows that the

runtime is O(n2).

We designed our second twist to help students better understand this by breaking the paradigm

that there always exists a stable matching, while still requiring students to find the stable

matching for the remaining labs. This forces students to “catch” the case where proposers and

acceptors go unmatched, helping them understand why this case does not exist in the simple

algorithm. In the original version, there will always be one unmatched acceptor willing to accept

our proposal. In this updated version, this is not the case as they may not want to join us, or

we may not want to accept them.. We also wanted to stress the idea that the stable matching

is optimal for the proposers and suboptimal for the acceptors. This idea was implemented by

forcing them to return the optimal matching for labs, not students. Lastly, we wanted students

to better understand how this algorithm could be applied more in the real world, like in hos-

pital matching, where you don’t necessarily have a one to one mapping. Thus, we imposed the

condition that labs can host multiple students, forcing students to rethink what it means for a

proposer to be “free” and augment the algorithm beyond its direct pseudocode.

5 Key Ideas for Solving Programming Challenge

To successfully address the fact that some students or labs may not accept a pairing, students

must understand the way that the algorithm iterates through potential pairings. Since the

algorithm iterates through every proposer’s student preferences, we don’t have to account for

students the labs refuse to take, as these students will not be present in the preference list and

thus never be proposed too. However, we do have to account for the labs a student would refuse

4



to join. A naive way of doing this would be to check if the student’s preference list contains this

lab by iterating through the list. Yet, this introduces an additional nested for loop and increases

time complexity to O(n3). Students should instead realize that we can facilitate membership

checks in constant time by adding valid student lab pairings to a set or matrix in a preprocess-

ing step. We can then quickly check whether this lab pairing is allowed by the student before

accepting or issuing a proposal, still allowing for O(n2) time. This strategy should take thought

but not be too hard to decipher, as using hashing or arrays to store membership is stressed in

many algorithms and classes.

Additionally, this twist brings up the problem of breaking out of the while loop if certain

labs are never matched. We know that after a lab has proposed to all students without an

acceptance that it must be unpaired in the final solution. However, we should not return early

if we find this case since we require that the algorithm find the labs with unfilled spots. Instead,

students should notice that we can artificially set “free” to false, allowing the loop to eventually

break once no free labs are left. This should not affect the results of any other lab, as we know

that no student would be paired to it. To ensure that this information is still recorded, students

should update a list or other data structure mapping labs to their number of unpaired slots.

While we think this is slightly more difficult than before, it should not be difficult to determine

if you understand the structure of the original Gale-Shapley algorithm.

Ensuring that results are most beneficial to the lab rankings is trivial given a cursory un-

derstanding of Gale-Shapley’s results. In any case, the output matching is optimal with respect

to the proposers, meaning students must use the labs as proposers in their implementation.

This was mainly added, alongside the requirements that outputs be ordered in terms of lab

preferences, to impose structure to the results. Since many stable matchings are usually pos-

sible, this would otherwise introduce issues where two implementations could return different

but equally correct results.

To employ a unique amount of students, you can treat each spot in the lab as its own proposer,

reducing the problem back into one-to-one mappings. The updated algorithm now iterates

through the spots of each lab, marking a lab as not “free” when there are no spots available.

This introduces possible issues with preferences, making it more than an extremely quick fix, as

if strict comparisons are not used to break off previous pairings, we introduce instances where

students can circularly iterate through spots in the same lab. In our solution, we imposed the

additional condition that, if a lab spot proposes to a student in the same lab, the student will

only accept if the index of this spot is lower than the current. This makes better students bubble

up to earlier indices, removing the need to sort these students in post-processing. We also must

now update which spots are open in the lab, and monitor whether a lab is “free” based on an

integer of open spots, which is incremented or decremented after successful proposals. While

treating each spot as its individual proposers is easier to see, the many small changes that are

needed as a result can be slightly tricky.

Overall, the time complexity of the augmented algorithm still remains O(n2) if we treat n

5



as the overall number of students. Added preprocessing steps are all O(n2), and thus do not

drive up asymptotic runtime. Although we add an additional nested for loop to iterate over

open spots within the lab, this is equivalent to iterating n times once, as the total number of

spots across all labs is equal to n. Our space complexity is similarly also O(n2). We additionally

store a mapping from each of the n students to the at most l labs it refuses to participate in.

Since the number of labs is always less than or equal to the number of students, this is O(n2)

space, and it does not increase the overall complexity.

6 Conclusion

The Gale-Shapley algorithm demonstrates a solution that is guaranteed to provide stable match-

ings, which is especially useful in countless real-world allocation problems. First, the idea of sta-

bility was reinforced (pairings with no incentive to unravel), and this showed why brute-force or

greedy heuristics could not meet the goal. The “Approach” section then distilled the algorithm

into three intuitive actions: propose, hold, and (when it makes sense) trade up. The “Imple-

mentation” section translated those actions into constant-time array operations, proving that

every proposer-acceptor pair is examined once and establishing the canonical O(n2) bound. A

step-by-step three-agent scenario illustrated each state change, while the programming-challenge

extension demonstrated how the same ideas stretch to capacity constraints and incomplete pref-

erence lists without sacrificing correctness or asymptotic efficiency.

Taken together, these pieces show a seamless arc: a practical problem leads to a principled

algorithm; the algorithm maps cleanly onto basic data structures; and minor, well-reasoned

modifications adapt it to messier domains such as residency placement or many-to-one lab as-

signments. Because every proposer advances down a finite preference list and each acceptor only

improves or keeps an existing partner, the process must terminate, and it always terminates

with a matching that is both stable and optimal for the proposing side. That guarantee, and

the clarity with which we can explain and implement it, is precisely why Gale-Shapley remains

a cornerstone of modern matching theory.

6


