
Dual-Duel Dash Master

Motivation

You’re a competitive player of the newest hit
mobile game “Dual-Duel Dash”, where you con-
trol two knights on a treacherous board. The
game works by generating a random board of
tiles—some of which have treasure, and others
that don’t. There are two arrows (an apple ar-
row and a banana arrow) going from each tile
to some other tile. On your turn, you are pre-
sented with three different strings of apples and
bananas (for instance, ‘aabbab’, ‘abbaba’, and
‘bbabaa’, where ‘a’ is apple and ‘b’ is banana). You get to choose one of these strings, at which
point the knights begin their course: for each fruit in the sequence, they follow the path which
corresponds to it. At the end of the sequence, if both knights land on treasure, they win a grand
prize; if one does, it’s a modest victory; if neither, they go home empty-handed.

Being a computer science undergraduate, you understand that underneath the fun, the knights’
behavior closely resembles a DFA and can hence be predicted. So far, you’ve been able to scrape
the webpage to convert the on-screen paths into a modified DFA with two start states, which you
call a DoubleStartDFA, that helps you figure out which path to choose. However, the game recently
underwent a big update, making the paths and fruit sequences much larger and more complicated.
In order to uphold your reputation as Grand DashMaster, you must “level up” by minimizing the
DFA to query strings on it faster.

Problem Statement

A DoubleStartDFA M = (Q,Σ, δ, s1, s2, F ) works like a standard DFA except it has two start states.
Here Q = {0, 1, . . . , n− 1}, the input alphabet Σ = {a, b}, and δ : Q× Σ → Q is complete (it has
a value for every state and input symbol). The start states are s1, s2 ∈ Q, and F ⊆ Q is the set
of final (accepting) states. Upon reading a word w ∈ Σ∗, each start state si follows transitions to
some state qi. The overall outcome, notated as outcome(M , w), is:

• Accepting if both q1, q2 ∈ F ,

• Half-Accepting if exactly one of q1, q2 lies in F ,

• Rejecting if neither lies in F .

Your task is to construct an equivalent minimized MultiFinalDFA M ′ = (Q′,Σ, δ′, s′, P ) with a

1



single start state s′ and a partition P = {R,H,A} of its states into Rejecting, Half-Accepting, and
Accepting classes. Upon reading a word w ∈ Σ∗, its start state s′ follows transitions to some state
q. The partition that q lies in (Rejecting, Half-Accepting, or Accepting) determines its outcome,
notated outcome(M ′, w), which should always equal outcome(M,w).

Input Format

All inputs use the fixed alphabet {a, b}. All states are represented as integers. You are given the
following lines:

n % number of states (0..n-1) in DoubleStartDFA

p c q % transitions: from state p on symbol c to state q

... % (one line per transition)

s1 s2 % the two start states (integers)

f % number of final states

q % one final-state per line

Transitions cover every (state, symbol) pair exactly once, so there are a total of 2n transition lines.

Output Format

Produce the minimized MultiFinalDFA with three final partitions:

n’ % number of states in minimized MultiFinalDFA

p c q % transitions (one per line, as before)

...

start % the single start state (int)

r % number of rejecting states

... % rejecting-states (one per line)

h % number of half-accepting states

... % half-accepting-states (one per line)

a % number of accepting states

... % accepting-states (one per line)

Note

Given any input, the output is not unique, since nodes of the DFA can be labeled differently while
still reading the same language. Hence, we don’t check that your output matches ours, but rather
run a script to determine that the MultiFinalDFA you produced is equivalent (up to relabelling)
to ours.

2



Example

Input Output

8

0 a 1

0 b 2

1 a 3

1 b 4

2 a 5

2 b 6

3 a 1

3 b 4

4 a 4

4 b 5

5 a 4

5 b 5

6 a 7

6 b 7

7 a 6

7 b 6

0 2

2

4

5

6

0 a 0

0 b 0

1 a 1

1 b 5

2 a 0

2 b 4

3 a 1

3 b 2

4 a 4

4 b 4

5 a 5

5 b 5

3

3

2

3

4

2

0

1

1

5

3


