Executive Summary: DFA Minimization via
Hopcroft’s Algorithm

Kai Dove Peter Tessier Kenneth Nguyen

University of Virginia

CS 4501: Advanced Algorithms and Implementation

April 2025

ABSTRACT

This executive summary presents an in-depth overview of DFA Minimization, a
foundational algorithm in automata theory and compiler design. We explain the
theoretical motivation behind DFA minimization, discuss the high-level algorith-
mic intuition, describe implementation in C++, Java, and Python, and detail a cus-
tom programming challenge with a non-trivial extension. This project is designed
to deepen student understanding of state reduction techniques and the importance
of preserving language equivalence.

1 INTRODUCTION / PROBLEM STATEMENT

Deterministic Finite Automata (DFAs) are commonly used in systems involving lexical analysis,
model checking, and formal language verification. However, DFAs often contain many redundant or
equivalent states that recognize the same suffix language. These extra states often increase memory
usage and decrease performance in real-time systems.

The problem of DFA minimization involves reducing the number of states in a DFA without chang-
ing the language it accepts. In other words, the goal is to find a smaller, functionally equivalent DFA
that recognizes the same language as the original.

The problem arises when large DFAs are inefficient to process or understand. While the conversion
from a Non-deterministic Finite Automaton (NFA) to a DFA may introduce an exponential number
of states, minimization helps optimize the result. The challenge is to systematically identify and
merge indistinguishable states without changing the language recognized by the automaton.

There are several known approaches to DFA minimization, such as Moore’s algorithm and Brzo-
zowski’s algorithm, but both have large drawbacks. Moore’s method relies on comparing all state
pairs, which leads to a worst-case runtime of O(n?s), where n is the number of states and s is the
alphabet size. Brzozowski’s method has an exponential worst-case runtime because it can blow up
due to the determinization step when reversing NFAs.

Hopcroft’s algorithm is a more efficient alternative. It guarantees a worst-case time complexity of
O(ns log n) by controlling how partitions of the state space are split and processed. The algorithm is
both optimal for DFA minimization in theory, but also in practice, as many real-world systems have
hundreds of thousands of states.

Understanding and implementing Hopcroft’s algorithm lies in managing the partition refinement
process, ensuring each transition is processed as few times as possible, and maintaining efficient
tracking to avoid unnecessary recomputation.

Goal: Reduce a DFA to its minimal form in O(nlogn) time using an efficient algorithm like
Hopcroft’s algorithm.

Key challenge: Ensuring language equivalence while maximizing state reduction.

2 OVERALL INTUITIVE APPROACH

Hopcroft’s algorithm minimizes DFAs by grouping together states that cannot be distinguished by
any sequence of inputs and treating each group as a single state in the resulting minimized automa-
ton. Instead of examining all pairs of states, it refines collections of states at a time, based on whether
their behavior under certain input symbols leads to distinguishable outcomes.

At the beginning of the process, all states are divided into two categories: accepting and non-
accepting. These two groups form the initial partition. The algorithm then uses a worklist to it-
eratively examine how states in other groups transition into these sets. If some states in a group
react differently than others when a particular symbol leads into a target set, that group is split. This
pattern continues until no more splits are possible.

A major reason the algorithm remains fast is that it always chooses the smaller piece of any split
to revisit next. This strategy ensures that each transition only needs to be reconsidered a limited
number of times—about logn in the worst case: allowing the algorithm to scale well with large
input sizes.

2.1 STEP-BY-STEP OVERVIEW

» Start with an initial partition of states: final vs non-final.

* Iteratively refine the partition: for each symbol, split groups if states behave differently
under transitions.

» Stop when no group can be split further.

* Build a new DFA using the final partition classes as states.

Next, we move from this high-level intuition into the concrete mechanics of implementation.

3 IMPLEMENTATION

We implemented Hopcroft’s DFA minimization algorithm across three languages: C++, Java, and
Python. Each implementation strictly follows the classical structure of Hopcroft’s partition refine-
ment approach, adapted carefully to each language’s paradigms.

At the heart of our logic, we based our implementations on the following high-level pseudocode,
closely following the standard presentation from foundational sources:

P := {F/ Q \ F}
W := {FI Q \ F}

while (W is not empty) do
choose and remove a set A from W
for each ¢ in do
let X be the set of states for which a transition on ¢ leads to a state in A
for each set Y in P for which X Y is nonempty and Y \ X is nonempty do
replace Y in P by the two sets X Y and Y \ X
if Y is in W
replace Y in W by the same two sets
else
if X Y| <= |Y \ X|
add X Y to W
else
add Y \ X to W

This pseudocode formed the blueprint for all of our implementations. Our basic version of the min-
imization handled states partitioned into only two classes: accepting and non-accepting. Handling
additional classes (accepting, half-accepting, rejecting) was only necessary for our later program-
ming challenge extension.

3.1 ALGORITHM WORKFLOW
The core stages of the algorithm were consistent across all versions:

1. Input: Read the DoubleStartDFA, consisting of states, transitions, two start states, and
final states.

2. Product State Expansion: Represent the DFA as a product of its two start states, generat-
ing composite states (p, ¢) where p and q are original states.

3. Inmitial Classification: Assign each composite state a class (Rejecting, Half-Accepting, or
Accepting) based on whether its components are final states.

4. Partition Refinement: Apply Hopcroft’s partitioning procedure to group states into equiv-
alence classes, refining based on transition behavior.

5. Minimized DFA Construction: Construct the minimized DFA using the final partitioning,
assigning a new state to each class.

6. Output: Output the minimized DFA in a standard format, detailing transitions, start state,
and partitioned classes.

3.2 HIGHLIGHTS ACROSS LANGUAGES

C++ Implementation: Efficient memory control and 64-bit integer encoding for state management.
Java Implementation: Object-oriented encapsulation with clear separation of concerns using cus-
tom classes.

Python Implementation: Readable and modular code using built-in data structures for intuitive
understanding.

Our programming challenge, Dual-Duel Dash Master, builds upon Hopcroft’s minimization algo-
rithm but introduces a non-trivial extension that requires adapting the standard two-class partition-

ing.

In the classical Hopcroft’s algorithm, states are initially partitioned into two groups: accepting and
non-accepting. However, in our challenge, the DFA accepts strings based on the joint outcomes of
two simultaneous knight paths starting from two different states. Thus, each composite state (p, q)
must be classified into one of three distinct outcome classes:

* Accepting: Both knights reach accepting states.
» Half-Accepting: Exactly one knight reaches an accepting state.
* Rejecting: Neither knight reaches an accepting state.

This three-way classification required modifying the standard initialization step of Hopcroft’s algo-
rithm:

* The initial partition P was divided into three sets instead of two.

* The refinement process and worklist management followed the same structure, but needed
to respect these custom acceptance classes throughout minimization.

Learning Objectives:

* Apply product automata construction and manage composite states.
» Extend classical algorithms to handle richer acceptance conditions.
» Reason carefully about partition stability when more than two outcome categories exist.

» Reinforce understanding of language equivalence and state distinguishability.

Additional Twist: Students were required to output the minimized automaton while preserving the
custom three-class acceptance structure correctly, even after minimization. This modification tests
deeper algorithmic flexibility and real-world problem solving, where simple binary outcomes are
often insufficient.

4 KEY IDEAS FOR SOLVING PROGRAMMING CHALLENGE

* Model knight movements as pairs of states across the board.

* Classify composite states into three categories depending on acceptance behavior.
» Extend Hopcroft’s algorithm to initially partition based on three classes.
 Carefully manage transitions and final output states under new acceptance rules.

4.1 COMPLEXITY ANALYSIS

* Base Hopcroft’s runtime: O(n logn)
« Composite states initially O(n?), but reachable states significantly fewer in practice.

* Overall complexity remains tractable for large input sizes.

5 CONCLUSION

Hopcroft’s algorithm is a state-partitioning method designed to efficiently minimize deterministic
finite automata without changing the language they accept. Rather than exhaustively comparing
every state pair, it relies on repeatedly splitting groups of states based on how they transition under
each symbol in the input alphabet. This process focuses on placing indistinguishable states into the
same equivalence class and ensures optimal merging.

The main advantage of this method is its speed: by focusing only on necessary refinements and
prioritizing the smallest splits, it reduces redundant work and achieves an increased level of perfor-
mance. Though the implementation requires careful tracking of block splits and transition mappings,
the tradeoff is valuable for systems where space and speed are critical, such as in lexical analyzers
and pattern-matching engines. Although Hopcroft’s algorithm is not the easiest to implement, it
remains one of the most effective tools for automaton reduction when both accuracy and scalability
matter.

A APPENDIX

The following external references were consulted during the research and preparation of this project:

* Wikipedia: DFA Minimization

* Wikipedia: Hopcroft’s Algorithm

* YouTube: Hopcroft’s DFA Minimization Algorithm (Video Lecture)
MIT 6.045 Lecture Notes: DFA Minimization (PDF)

* YouTube: Another Explanation of DFA Minimization

FSM Minimization Tutorial: Detailed Walkthrough

https://en.wikipedia.org/wiki/DFA_minimization
https://en.wikipedia.org/wiki/Hopcroft%27s_algorithm
https://www.youtube.com/watch?v=lM5eIpF0xjA
http://people.csail.mit.edu/rrw/6.045-2020/lec6-before-class.pdf
https://www.youtube.com/watch?v=7W2lSrt8r-0
https://swaminathanj.github.io/fsm/dfaminimization.html

	Introduction / Problem Statement
	Overall Intuitive Approach
	Step-by-Step Overview

	Implementation
	Algorithm Workflow
	Highlights Across Languages

	Key Ideas for Solving Programming Challenge
	Complexity Analysis

	Conclusion
	Appendix

