
Burrows-Wheeler Transform
Executive Summary

Eddie Li (grc4rz), Luke Del Giudice (wcc5ub), Siddharth Premjith (rqf8pe)
University of Virginia

1 Introduction

A core challenge in data compression is reshaping strings so that repeated patterns are easier to
exploit. Many natural strings, such as English text or DNA sequences, contain repetitions that are not
efficiently handled by traditional compression. The Burrows-Wheeler Transform (BWT) addresses this
by rearranging the string to group similar characters together. This property can then be effectively
taken advantage of by compression algorithms. Additionally, BWT has the feature that it is easily
reversible. In particular, as long as you have the transformed string, you can easily get the original
string without storing extra data. This simplicity contrasts with other methods that may require
more complex metadata or models to achieve reversibility.

The naive forward implementation of BWT has O(n2log(n)) complexity. When fully optimized
and using a suffix tree to conduct the string encoding, it has a runtime complexity of O(n) and a
space complexity of O(n). The naive complexity to inverse the BWT requires O(nlog(n)) time.

2 Overall Intuitive Approach / Solution

The BWT algorithm can be broken down into a few steps. First, we add a character at the end, such as
$, to mark the end of the string. The idea is that this character comes alphabetically before anything
in our possible character universe. Then, we will generate all cyclical rotations of our string, which are
just all possible permutations of the string maintaining the same order. After, we sort these rotations
lexicographically. Finally, we will concatenate all of the last characters of the lexicographically sorted
strings to get our transformed string.

Here is a specific example to clarify this process:

Figure 1: Full Forward BWT Process

On the left hand side, we first add the $. Then, under step 2, we create all the cyclical rotations,
as seen in the black box. We then transform this into the lexicographically sorted list, as seen in the
box on the right. Then, we take the last character in each of the strings (highlighted in red), and
concatenate them.

1

This string can then be inputted into a string compression algorithm, and once the original string
needs to be retrieved, the BWT output can be retrieved through decompression, then turned into the
original string in the following manner:

1. First, assign an index for each repeated character relative to where it appears in the BWT. For
instance, the first a should be a0, the second a should be a1, and so on.

• a0i0r0n0g0v0i1i2$

2. Then, create a sorted version of this list of characters, including the indices.

• $a0g0i0i1i2n0r0v0

3. Then, create a one-to-one correspondence of the characters. Since the BWT is ordered by the last
character of the sorted strings, that means that each character of the sorted Burrows-Wheeler
transform is the corresponding first character of the unsorted BWT. So in the image below,
the left hand side is the string of the sorted list of characters, and the righthand side is the
BWT-transformed string with the indicies. We create a one-to-one correspondance as shown by
the arrows:

Figure 2: Mapping Backward BWT Process

4. Then, we can use the knowledge that the character at the end of a string must be before the
character at the beginning of the string, due to the cyclical nature of how the BWT works.
Thus, for $, the character it points to must be the last character of the original string. Thus,
add that to the end of the string. Repeat this step until the special starting character $ has
been reached.

• $ → a0: a0

• a0 → i0: i0a0

• i0 → n0: n0i0a0

• n0 → i1: i1n0i0a0

• i1 → g0: g0i1n0i0a0

• g0 → r0: r0g0i1n0i0a0

• r0 → i2: i2r0g0i1n0i0a0

• i2 → v0: v0i2r0g0i1n0i0a0

• v0 → $: $v0i2r0g0i1n0i0a0

5. Remove the special starting character and the indices. The resulting string should be the original
string pre-BWT.

2

• $v0i2r0g0i1n0i0a0 → virginia

A note about why step 4 works for repeated characters is as follows: if the sorted set of cyclical
strings has the first two characters be ”ab”, ”ag”, and ”at”, that means that in the sorted set of
the strings, the cyclical strings starting with ”a” must be in order of the 2nd character. From this
observation, it can also be gathered that these 2nd characters must be at the start of the cyclical string
at some point. In that situation, the corresponding ”a” ends up going to the end of the string, and
each ”a” will appear in order of the 2nd character, like as follows: ”b a”, ”g a”, ”t a”. Thus, the
order is maintained across both the sorted set of strings and the Burrows-Wheeler transform string
since in both cases, it depends on the character immediately following the repeated character, which
is why the sorting can maintain the order present within the BWT.

3 Implementation

Implementing the basic form of the BWT through following the sorted rotations method requires two
components: conducting the BWT on an input string and reversing the BWT on a transformed string.
Both are described below.

3.1 Conduct the BWT

1. Ensure that the input string has a ”$” added to the end of the string in order to track the
original order of the string characters.

2. Find all the rotations of this string. Doubling the original string and indexing each set of n
characters, n referring to the length of the original string, is one approach to simplify finding
the rotations.

3. Sort the rotations through string comparison.

4. Set a variable for the BWT string. Iterate through the sorted rotations in order and concatenate
the last character of each rotation to this variable. This resulting string is the final BWT string.

3.2 Reverse the BWT

1. Given a transformed BWT string, find two pieces of information:

(a) Find the rank of each character of the BWT string in order, with the rank referring to how
many times the character has appeared previously in the string.

(b) Find the total appearances of each unique character.

2. Use the total appearances of each character to determine the first index of the sorted rotations
each character prefixes.

(a) Start with the lowest value character and set its index to 0.

(b) For each character, increase the index by the amount of appearances of this character.

(c) The subsequent character should start prefixing rotations after all appearances of this char-
acter, so the new index represents when the subsequent character starts prefixing rotations.
If a subsequent character exists, set its index to the current index value. An example is
if ’a’ prefixes indices 0-3, then ’a’ appears 4 times, and if the subsequent character is ’b’,
then it starts prefixing at index 4.

(d) Repeat the last two steps for each new character.

3. Create the original string by utilizing the knowledge that the character at the end of an instance
of the sorted rotations string is a part of the BWT string. bw[rowi] represents what character
is at the end of index rowi of the sorted rotations. Thus, starting with the end of the BWT
string, $, which prefixes 0, we know the character at bw[0] is the last character, and this can
be prepended to $. Then, for each character being prepended, we can recalculate rowi based
on the first instance in the sorted rotations the character prefixes, first[c] and its rank in the
original BWT string, ranks[rowi]. This is summarized in the code snippet below.

3

rowi = 0

t = ’$’

while bw[rowi] != ’$’:

c = bw[rowi]

t = c + t

rowi = first[c] + ranks[rowi]

(a) It is worth noting that the while-loop ends when bw[rowi] equals $, as this means that the
beginning character of the original string is reached, as $ is cyclically before the beginning
character.

3.3 A brief note on the suffix-array optimization

One observation you can make is that if you look at the matrix, and you look at each substring up to
the dollar sign, you notice that each suffix of the original string appears once. From this, you can then
notice that the order of the strings in the matrix is the same as if you were to order all the suffixes of
the string. Then the last column is just found by getting the character before the first letter of the
suffix.

Figure 3: Equivalence to Suffix Array [1]

So in this image, the left side is the matrix of the sorted cyclic shifts. And on the right side, it’s
the substring up to the dollar sign, and this is just the suffixes in sorted order. And then to create the
final string, and you go through each suffix, and get the character that would come before the suffix.

This then reduces to finding the suffix array, which is basically just a list, where each index is a
starting index of the suffix, if you were to sort the suffixes. This can be done naively in nlogn time.
However, rather than paying an extra log-factor to sort all n suffixes directly, the DC3 algorithm
builds the suffix array in linear time by exploiting a simple divide and conquer trick:

1) Divide the suffixes into two groups: those starting at positions congruent to 1 or 2 mod 3, and
those at positions 0 mod 3.

2) Conquer by recursively sorting the mod 1 and mod 2 suffixes using a radix sort on their first
three characters to form a smaller problem of size roughly 2n/3. Because each comparison is on
a fixed-length tuple, each round is O(n).

3) Induce the order of the mod 0 suffixes by one more linear pass: each mod 0 suffix is compared
against the already sorted mod 1 suffix that follows it, again using fixed-length tuple comparisons.

4) Merge the two sorted lists (mod 0 and mod 1,2) in one final linear scan to produce the full suffix
array.

4

Every step (fixed-length radix sorts, recursive calls on two-thirds of the data, and one linear merge)
takes O(n) overall. The result is the complete suffix array, which you can then use directly to generate
the Burrows–Wheeler Transform by pulling the character immediately before each sorted suffix. Some
supplemental visuals for this process can be found in the lecture slides, but any further depth on this
approach is outside the scope of this project.

4 Programming Challenge

4.1 Summary of Programming Challenge

The essential challenge for the programming problem is to determine how many numbers can replace
a placeholder number in a BWT-transformed array such that it can be inverted. The primary learning
objective for this problem is for the solver to get a better understanding of how the BWT algorithm
work, and how the inversion process corresponds to it. In order to solve this problem, the solver
will likely go through a few examples of transforming an array with BWT and inverting it. By going
through these examples, the solver should be able to make observations relating to limiting the number
of values to check, as they will not need to check values that don’t change the relative order of the
numbers.

4.2 Key Ideas for Solving Programming Challenge

The naive method to solve this would be to brute force all possible numbers that the 0 could be.
However, because these numbers can go to up 109, brute forcing is not feasible. So, more observations
are needed to be made!

In order for a number to replace the 0, and the array to be valid, you need to draw a graph between
the nodes on the lefthand side and righthand side, such that it hits all nodes and goes back to the first
one, as this is essentially how the reverse algorithm for BWT works. But, if you increment one value
on the left hand side, it isn’t very clear what happens to the graph, as the relative order of nodes
swap, and the edges get completely rearranged. However, one thing to notice is that when the order
on the lefthand side stays the same, there is no change to the graph. So for example, if the numbers
on the lefthand side are −1, 3, 7, 10, 15, and you incremented 3 to 4, the relative order of all the value
stay the same, and the graph will stay the same. So if the graph is valid with 3, the graph will also
be valid with 4. And similarly, if the graph is not valid with 3, it is also not valid with 4. This brings
us to the observations that for each gap between consecutive sorted numbers, we only need to test 1
number for all the numbers in the gap, which is on the order of n. And for each test, we can it in
O(nlogn) time.

The images in Figure 4 give a good visual representation of this.

5

Figure 4: Programming Challenge Visual

So between the first image and the second image, we change the 3 to a 4, but the relative order
of the numbers stay the same (the left hand side and the right hand side stay the same, aside from a
relabelling of 3 to 4), and hence the graph of the arrows also stays the same. But, when we change
from the first image to the third image, we change 3 to 8, and because the order changes on the left
side, the arrows get completely changed. This brings us to the observation that changing the value 3
to anything between its neighbors (between 1 and 7 will not change the graph, but changing it outside
this range might change the graph, and may make the BWT no longer valid).

So, we only need to change the 0 in our problem on the order of number of gaps between consecutive
sorted numbers, which is on the order of n. And for each test, it takes nlogn time to sort the lefthand
side, and n time to get the mapping. So our solution is n2log(n). Additionally, we can get rid of this
log factor if we don’t resort the lefthand side for every change, and just swap values in the array.

We believe that this is a good challenge, as it initially feels very difficult to solve this without testing
every possible number. But, it requires the solver to play around with how the BWT algorithm works,
and draw a few of these graphs to realize the observations with the gaps. And after playing around
with the problem for a bit, we believe that this observation is within reach of most peoples’ ability.

5 Conclusion

The Burrows-Wheeler Transform (BWT) algorithm is a string preprocessing algorithm designed to
enhance data compressibility by rearranging characters to group similar symbols together. It works
by generating all cyclic shifts of the input string, sorting them lexicographically, and taking the
last column of the sorted matrix as the transformed output. Though the naive implementation has
a time complexity of O(n2logn), optimized versions using suffix arrays or suffix trees can achieve
linear time and space complexity. Crucially, the BWT is reversible, enabling lossless compression and
decompression.

The inverse BWT reconstructs the original string using a method called Last-First (LF) mapping,
which leverages the relationship between sorted and unsorted versions of the transformed string. Using
this method, we can get the original string of the BWT-transformed string O(nlogn) time.

Our programming challenge explores the relationship between the transformation algorithm and
the inverse algorithm and requires the solver to make observations relating to how the transforma-
tion/inverse changes when changing the values in the string.

6

To conclude this Executive Summary, we include two visualizations illustrating BWT’s impact.
Table 1 compares the compression ratios of five algorithms with and without a BWT pre-step. These
measurements were taken on 5,000 random strings of length 5,000 generated either by uniform char-
acter selection or by sampling with a bias toward repeating substrings. As you can see, some methods
(most notably Huffman Coding) gain little or ever incur extra overhead from metadata. Addition-
ally, MTF, Arithmetic Coding, and Lempel-Ziv already natively capture similar substring structure.
Therefore, the most pronounced benefit under BWT falls to RLE.

Figure 5 shows RLE’s specific behavior: as the average run-length of similar substrings increases,
the compressed size falls in an inverse relationship. This pattern is exactly what we expect; RLE
encodes each run of identical characters as a single symbol plus a count, so it performs poorly on
mixed substrings. BWT, however, rearranges the string so that repeated substrings become long runs
of the same character, making RLE extremely efficient.

In summary, while BWT isn’t the right preprocessing step for every compression algorithm, it
can deliver substantial gains for any compression algorithm that relies on contiguous runs of identical
symbols.

Compression Algorithm
Uniform Selection Substrings Likely Repeated

Without BWT With BWT Without BWT With BWT

Run-Length Encoding (RLE) 99.85 99.85 99.87 6.61
Huffman Coding 11416.55 11482.77 34375.87 34369.04
Move-to-Front Encoding 62.50 62.51 62.50 62.51
Arithmetic Coding 58.72 58.74 26.81 26.84
Lempel–Ziv (LZ77 / LZ78) 62.45 62.50 5.49 5.21

Table 1: Compression with and without BWT

Figure 5: Redundancy Visualized

7

References

[1] Langmead, B. Burrows–Wheeler Transform. YouTube Video, published ca. Sept. 2014. Available:
https://www.youtube.com/watch?v=4n7NPk5lwbI. [Accessed: 24-Apr-2025]

[2] Langmead, B. CG BWT Reverse.ipynb. Jupyter Notebook (rendered 24 Apr. 2025), nbviewer.org.
Available: https://nbviewer.org/github/BenLangmead/comp-genomics-class/blob/

master/notebooks/CG_BWT_Reverse.ipynb. [Accessed: 24-Apr-2025]

[3] Wikipedia contributors. Burrows–Wheeler transform. Wikipedia, The Free Encyclopedia.
Last edited 23 April 2025. Available: https://en.wikipedia.org/wiki/Burrows%E2%80%

93Wheeler_transform. [Accessed: 24-Apr-2025]

[4] GeeksforGeeks. Burrows–Wheeler Data Transform Algorithm. Last Updated: 08 Dec. 2023. Avail-
able: https://www.geeksforgeeks.org/burrows-wheeler-data-transform-algorithm/.
[Accessed: 24-Apr-2025]

8

https://www.youtube.com/watch?v=4n7NPk5lwbI
https://nbviewer.org/github/BenLangmead/comp-genomics-class/blob/master/notebooks/CG_BWT_Reverse.ipynb
https://nbviewer.org/github/BenLangmead/comp-genomics-class/blob/master/notebooks/CG_BWT_Reverse.ipynb
https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
https://www.geeksforgeeks.org/burrows-wheeler-data-transform-algorithm/

	Introduction
	Overall Intuitive Approach / Solution
	Implementation
	Conduct the BWT
	Reverse the BWT
	A brief note on the suffix-array optimization

	Programming Challenge
	Summary of Programming Challenge
	Key Ideas for Solving Programming Challenge

	Conclusion

