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Introduction / Problem Statement: 
 

With an ever-growing amount of data, even simple tasks such as counting can be 
memory-intensive. Consider the task of a website like Reddit counting the views on a post. If a 
user revisists the same post, they should not increment the view counter. However, in order for 
Reddit to verify whether a given visit is new or recurring, they must keep a record of every 
single user who has visited the post in the past. This would be extremely memory-intensive! 
Reddit gets over 100 million daily active users, who each view multiple posts a day and each 
have 4 byte usernames that must be stored separately for every single post they visit. 

 
This problem is known as the count distinct problem and it extends to websites tracking 

unique visitors, databases tracking unique queries, and networks tracking unique IP addresses. 
However, the upshot is that most of these values don’t need to be exact. If Reddit displays that a 
post has 1000 views, when in actuality it has 990, the platform is virtually the same. So, we 
would be willing to sacrifice some amount of accuracy to substantially reduce the space 
complexity of counting unique elements. 

 
 This is what French computer scientist Philippe Flajolet sought to accomplish in 1984 
with the Flajolet-Martin algorithm: maintain the same time complexity as the naive approach, 
while substantially reducing space complexity for large streams of input, and maintaining a 
reasonable low margin of error for estimates. Flajolet later built on this foundation with the 
LogLog algorithm in 2003. In the same paper, Flajolet and Marianne Durand introduced the 
SuperLogLog algorithm and in 2007, Flajolet and others introduced the HyperLogLog algorithm, 
providing mathematical optimizations for reducing margin of error with no added space or time 
complexity. 
 
 In particular, the HyperLogLog algorithm takes a multiset as input, and returns an 
estimated count of the number of distinct elements in the multiset. It achieves a time complexity 
which reduces O(n) for n items in the multiset (the same as the native hash-set approach). It 
achieves a space complexity of O(m) for m registers, an extraordinary improvement from the 
O(n) space complexity of the naive approach. And finally, it achieves a standard error of 
1.04/sqrt{m}. As a result, the exact space complexity and error depends on the exact 
implementation of the algorithm, but as an example, Redis’ (not Reddit’s) HyperLogLog 
implementation uses up to 12 KB and provides a standard error of 0.81%. And this 12 KB is 
fixed and reliable, rather than variable based on input size!  
 



 

 In this summary, we’ll explore how this algorithm works at a high-level, delve deep into 
its implementation, and look into a neat programming challenge which uses the algorithm with a 
special twist. 
 

Overall Intuitive Approach / Solution: 

At a high level, the algorithm passes through every element in the multiset, hashes it into 
a bitstring, and then cleverly uses probability to make an estimate of the multiset’s cardinality 
merely using the number of leading zeros in the bitstring. 

Beginning with the hash function, we necessitate that the hash function produces 
uniformly distributed output. Think of this as treating each bit as a coin flip that has an equal 
chance of heads and tails. Therefore, every bitstring is just a sequence of coin flips, each with an 
equal probability of occurring. 

 So, we go through the multiset, passing each value into our designated uniformly 
distributing hash function. Then, we take bitstring output and split the bits into a “bucket 
segment” and an “offset”. The motivation behind using buckets is to aggregate different 
predictions together to get a more reasonable estimate. If we let one singular power of 2 
prediction dictate our estimate, then we’d have extremely high error. So, we designate some 
number of buckets m and let the first log_2(m) bits denote which bucket has its prediction 
updated from our offset. 

The prediction itself is then made using the offset bits. We begin by counting the number 
of leading zeros of the offset. So, for example, the segment 00100 contains 2 leading zeros and 
the segment 00001 contains 4 leading zeros. Now, here’s the clever part. Going back to the 
analogy of coin flips, if we have 4 consecutive leading zeros, followed by a 1, that’s as likely as 
flipping 4 heads followed by a tails, which would be 1/(2^5). And based on probability theory, 
we can therefore expect to flip the sequence of coins 2^5 times before we get that result. So, the 
fact that we found a hash with a 1 in the 5th position (1-indexed) suggests that we have hashed, 
on average, 32 values. 

 
However, our bucket technically doesn’t predict 32. It stores some maximum 1 position 

and then compares our current offset to that maximum. Let’s say a few elements ago, we found a 
sequence with a 1 in the 7th position. Then, the bucket will keep its max of 7 and ignore the 5. 
Notice that the bucket needs very little storage–just enough bits to store whatever the max will 
be. This is logarithmic with respect to the actual max number, which itself is logarithmic with 
respect to the number of elements in the multiset. Therefore, we have a space complexity of 
O(log(logn)), hence the name Hyperloglog. 

 



 

Each bucket’s maximum is then aggregated with a harmonic mean. We use a harmonic 
mean rather than an arithmetic mean since the distribution of predictions is heavy-tailed. 
Consider the fact that half of the maxes will be 1s, a quarter 2s, but after a thousand elements we 
might get an outlier like 20 or 25 which, when treated as an exponent, will drastically 
overestimate our estimate. A harmonic mean weighs down these larger values to compensate. 

 
We also then must multiply by m to account for the fact that each bucket will only 

estimate its share of the cardinality, since we chopped the bucket bits off of the actual hashed 
input.  

 
Finally, we must multiply by some constant alpha. Through mathematical analysis too 

advanced for an undergraduate algorithms class, it was found that we consistently overestimate 
the actual cardinality by a fixed factor (as a function of m). So, we simply multiply by alpha to 
counteract that bias.  

 

Implementation: 

 As mentioned earlier, we start the algorithm by converting all items to their bit 
representation, which is typically a 64-bit representation. In order to get this in some language 
like C++, we take each element in the multiset and hash it using a SHA1 algorithm which results 
in a 160 bit sequence. Because we only end up using 64 bits, we actually take the lower order 64 
bits of this hash to get mostly unique 64 bit strings associated with each element. In languages 
like python however, we simply use the built in 64-bit hash function. 

 Another key part of this algorithm is choosing a p value. This p value corresponds with 
the number of buckets m, where m is equal to 2^p. A typical p value that this algorithm uses is 
16, which results in 65536 buckets. A key point to notice here is that each bucket can be 
uniquely identified by a sequence of bits of length p. In this case, each of the 65536 buckets can 
be represented with 16 bits. In addition to this, the algorithm decides on specific alpha constants 
based on the number of buckets, and this is used later when combining buckets. 

 After hashing all the elements and determining the number of buckets that your algorithm 
will use, we must divide up the bit sequence to use in the different parts described earlier in the 
paper. Because p bits can be used to represent a unique register, we take the higher order p bits 
from the bitstring of length 64 to represent the “bucket segment” and we take the remainder of 
the bits to represent the “offset.” Based on this segmentation, every time we hash and prepare a 
new bitstring, we will simply drop it into the “bucket segment” represented by its higher order p 
bits. 

 The next step within each bucket is actually utilizing the “offset” to compute a 
meaningful value for finding the number of distinct elements. As mentioned earlier, we will use 



 

the number of leading zeros in the “offset,” and the implementation of the algorithm within each 
bucket is actually quite intuitive. In each bucket, we store a single integer value that represents 
the maximum number of leading zeros encountered within this bucket. This is stored as an array 
or list of size m and is initialized with zeros before the algorithm is run. As each element is read 
or inserted into its respective bucket, we get the number of leading zeros of the offset, compare it 
to the current maximum number of leading zeros, and update it if the current number of leading 
zeros is greater. This is all done in constant time for each insertion. 

 After all of the elements from the multi-set are inserted, we have the maximum number 
of leading zeros that each bucket encountered in an array of length m. Now, the results of each of 
the buckets can be combined to estimate a cardinality of the entire set. To do this, we begin by 
taking the harmonic mean Z*m of each bucket’s estimate. We use this harmonic mean because 
this is a probabilistic solution that reduces the variance across the buckets. Additionally, we 
record a variable V that stores the number of buckets that still have a 0 in them, which can be 
used for optimization later. 

 (where m*Z is the harmonic mean) 

 

Next, since the harmonic mean only gives the estimate for each bucket, we need to 
multiply by m to get the estimate for the entire multiset. Then, we multiply by the alpha we 
calculated earlier to counteract the fixed mathematical bias. 

 

 

 After calculating this raw estimate, there are two edge cases that can be considered to get 
a better estimate. Firstly, if this raw result is less than the 2.5 * the number of buckets, then we 
can adapt the estimate formula to be the number of buckets times the log of the number of 
buckets divided by the number of buckets that have a zero (V) rounded up to the nearest integer. 



 

 

 On the other hand, if the raw result is very large (>  (2^64) / 30), then we can adapt the 
raw estimate formula to be as follows (typically rare): 

 

 Now that we have the code for initializing and inserting into our algorithm, we can add 
an additional helper method for merging separate HyperLogLog algorithms together. This is a 
relatively simple algorithm that can be thought of as dumping one algorithm’s buckets into the 
corresponding buckets of another, and taking the max of the maxes. 

Summary of Programming Challenge: 

 To test the student’s knowledge of the HyperLogLog problem, we will have the student 
solve a problem involving pokemon collections and their value in a virtual pokemon card 
convention. 

 In this problem, you’re presented with a set of vendors all selling their own trading card 
collections. Since your goal is to complete your collection and you only need one of each card, 
you want to maximize the number of distinct cards that you can get. This is where the 
count-distinct problem comes in. You need to HLL merge your current collection with each 
vendor’s collection and then HLL count the number of distinct cards in the unioned collection. 

 These collections get very large, so you must use HLL as opposed to a naive solution to 
stay within memory constraints. 

 The twist is that each collection has a price and you have a budget constraint. You’re not 
just finding the number of cards you get from each collection, but solving a maximization 



 

problem where you decide the set of collections to purchase to grow your own collection the 
most. 

Key Ideas for Solving Programming Challenge: 

 This algorithm leans on 3 main parts to create a working implementation. The student 
should create a working HyperLogLog class, a merge operation for merging buckets from two 
different HyperLogLog objects, and an optimization for using their budget, like knapsack to 
arrive at their final result. Figuring out that this problem is designed for HyperLogLog is not 
difficult, but using those results effectively can pose to be more of a challenge. 

 Because the implementation of HyperLogLog already includes the merge operation and 
there are not many methods in the object, I think that asking the student to find and utilize this 
method when finding unique elements is fair. It allows the student to have to think beyond the 
scope of just implementing the data structure and have to apply the operations in multiple 
instances. 

 The twist of this problem can be quite challenging, but it is on par with the twists that the 
previous programming assignments have had this semester. The key to solving the optimization 
of budgeting is to use the knapsack problem, which can pose a challenge as this is an 
NP-complete problem. However, the knapsack problem is a relatively well-known algorithm that 
the student likely knows and the writeup for the assignment notes that the student should take a 
look at it. Although the implementation for this problem has dynamic programming, there are 
tons of implementations of this online that the student can access for this problem. Additionally, 
the difficulty and complexity of this problem is similar to that of the Transformation homework 
as we ask the student to use a data structure learned in class (segment trees) and then apply this 
data structure to a well known problem (simplex in the case of Transformation). 

Conclusion:  

HyperLogLog is an extremely effective solution to the count distinct problem, offering 
exceptionally low space complexity with little margin of error as a cost. As a result, it continues 
to be used by Google Analytics, Redis, Presto (by Meta), and many more platforms. Extracting 
probabilistic estimates from hashed bitstrings is unlike any other algorithm we’ve studied in 
class and is truly clever. As data volume continues to grow, it’s evident that HyperLogLog will 
remain essential.  

 

 


