
Video Service

You are the single engineer who has newly been placed in

charge of all of the servers at Metflicks after the previous

employee quit for 3% more total compensation at a rival

streaming service. After coming to terms with the fact that

you are doomed to manage the terabytes of data requested

of your precious servers each day, you pull yourself up by

your bootstraps and get to work. Once you finally figure out

how everything works, you stumble upon a note scrawled in

what looks like ketchup tucked away in your desk. It is a hastily written list titled

DO NOT SERVE UNDER ANY CIRCUMSTANCES, with many IP addresses listed

beneath. You find another list written in what smells like mustard titled BAD

DATA, with very sketchy descriptions of packet payloads that when strung

together, cause all of your servers to catch fire.

Write a program that, given a list of IP addresses and data sequences, rejects all

packets that contain IP addresses that are not to be served and halts

acknowledgements when multiple successive packets are combined to form bad

data. Packets with lower sequence numbers contain higher significance bits.

In addition, known valid users can make bad data requests, putting them on the

naughty list. Once a user has been marked as DO NOT SERVE, they cannot get off

this list and are permanently barred from using Metflicks.

Input

The first line of input is a number 2 ≤ 𝑎 ≤ 220 of DO NOT SERVE IP addresses. The

next 𝑎 lines will contain 32-bit representations of IP addresses

The next line of input is a number 2 ≤ 𝑏 ≤ 211 of possible bitstrings of bad data.

The next 𝑏 lines will contain bitstrings of length 25.

The following line of input is a number 22 ≤ 𝑝 ≤ 2500, where you will receive 𝑝

total packets. The next 𝑝 lines will be packets in the form:

32-bit source IP

address 𝑖
32-bit data

bitstring 𝑑

The remaining input is a number 2 ≤ 𝑢 ≤ 220 representing the number of user

IP address to test. The following 𝑢 lines of input are IP addresses that may or may

not have sent a request to your servers.

Output

For each IP address 𝑢, print 1 to mark that this user only had good requests or print

0 to mark that this user either was originally on the DO NOT SERVE list or earned

their way on by sending bad data. A user moves from being good to bad if they send

three bad messages in the same chain. Print nothing if this user did not make a

request.

Languages

This functions in java, python and C++, or pretty much any language that has

support of integers over size 2500. Runtime should not be a problem unless I/O is

extremely slow.

Sample Input

3

00111111100101011011111111001000

00111111011100010110101011100110

00010010001100000110010001001000

4

00100000010010101011010110110010

01110010011111001011101100011110

01110101001011011001011111001001

00011010111111101110100011000000

10

0110011111100110011001010010100000011010111111101110100011000000

0110011111100110011001010010100001110101001011011001011111001001

0110011111100110011001010010100000110001110101010110001010100101

0110011111100110011001010010100000010011100111011000010101101101

0110011111100110011001010010100001011001010101101001111111100101

0110011111100110011001010010100001110001011011111110111000111001

0110011111100110011001010010100001111001101111100010001111001110

0110011111100110011001010010100000001101100011000000000010100110

0110011111100110011001010010100001111011010110010111101111001011

0110011111100110011001010010100001111100110111010001001011100111

6

01100111111001100110010100101000

00011010011010010000010101001010

01011001111111101100010100010010

00010010001100000110010001001000

01011000110000010110011001000010

00111111011100010110101011100110

Sample Output
100

