
This Document explains why we chose to make each test case what it is

1)​ The sample
It's the provided sample.

2)​ Perfect Test
The sample uses the perfect command, but it has no effect on the answer. This test
case ensures that it works properly.

3)​ Imbalance Query
All of the queries in this test should require recursion down multiple paths to
ensure the solution properly adds ranges that don’t hit the node exactly.

4)​ Oops all swaps
Simply using the provided update function and calling it twice will not work. This
is because the update calls will add two separate versions to the persistent
segment tree. This is an error as only one new version should be added and
ensures that the solution does this correctly.

5)​ Replace then perfect
Every desk will be replaced with an inferior employee evaluation score. Then,
perfect will be called on each desk. This is to ensure that the solution properly
updates the perfect tracker when replacing.

6)​ Swap then perfect
All desks will be swapped with at least one other desk. Then, perfect will be
called on each desk. This is to ensure that the solution properly updates both
perfect trackers when swapping.

7)​ Already Perfect
The perfect command can be called on a desk that already has the best employee
at it. This ensures that this is handled correctly.

8)​ A load of nothing
This test case never has a query command. It is mostly to mess with the coder.

9)​ Long Long
The maximum value of each node is 109, and with a maximum of 105 employees
this will overflow an int. This makes sure the solution uses long longs when
appropriate to avoid this.

10)​Enough Versions
The provided persistent segment tree implementation has a maximum of 100
versions. This ensures that the solution either uses a vector or has room for 105

versions.

Samples 11-20 are larger test cases for time complexity

