
Introduction / Problem Statement

What's the problem?

If you've spent time programming, you've likely encountered the concept of palindromes—
sequences that read the same forward and backward. While palindromes might seem like a
trivial concept at first, they actually have meaningful applications in fields like bioinformatics,
natural language processing (NLP), and data compression. Here are a few examples:

DNA/RNA Structures: In molecular biology, palindromic regions in DNA and RNA can fold
into hairpin or stem-loop structures, which play key roles in gene regulation and function.

Pattern Recognition: In data compression, algorithms like LZ77 and LZ78 can exploit
palindromic patterns to identify and compress repeated structures more effectively.

Error Correction: Some advanced encoding schemes use palindromic properties to
enhance data integrity and support robust error detection.

Today’s problem is one of the most classic and elegant about palindromes:

Find the longest palindromic substring in a given string (A substring refers to a
contiguous sequence of characters within a string).

Some Naive Approaches

To find the longest palindromic substring in a given string, the most naive approach uses two
nested loops to generate all possible substrings and check each one:

This method has a time complexity of O(n³): one layer for the start index, one for the end
index, and another for checking if the substring itself is a palindrome (which takes O(n) time).
Clearly, this is inefficient and impractical for long strings (Like DNA/RNA sequences or massive
data compression).

If we look more closely at the structure of palindromes, we realize that using start and end
to define substrings is not optimal. Palindromes are symmetric, so instead of scanning all
possible substrings, we can iterate through each character and expand outward from it as a
center:

for start in range(len(s)):
 for end in range(start + 1, len(s)):
 check_is_palindrome(s[start:end+1])

for i in range(len(s)):

This approach is more intuitive and avoids checking every substring, but it still has two
major drawbacks:

Time complexity is still O(n²): In the worst case, each center may expand up to the
entire string.

It only detects odd-length palindromes: since the center is assumed to be a single
character. Even-length palindromes (like "abba") are ignored.

Our Goal

To overcome these limitations, the algorithm we seek should:

Achieve a target runtime of O(n).

Be able to detect both even- and odd-length palindromes efficiently in any
string.

Manacher's Algorithm - Idea

Detect both even- and odd-length palindromes

Let’s start solving the problem!

Before we dive into optimizing performance, we’ll first address a foundational challenge: how
to uniformly detect both odd- and even-length palindromes.

Odd-length palindromes are naturally handled when we expand around a single character. The
real difficulty lies in even-length palindromes. Intuitively, we can interpret these palindromes
to have a center between characters. For example:

How can we formalize this idea?

We can treat the space between every pair of characters as a valid center by inserting a
special character between each letter. This character should not interfere with the original
string’s content—so instead of inserting an actual letter (which could create false matches), we
typically use a non-alphabetic symbol like ## . For example:

 radius = 0
 while i - radius >= 0 and i + radius < len(s) and s[i - radius] == s[i
+ radius]:
 radius += 1
 max_length = 2 * radius + 1

ab ba
 ^

After this transformation, we no longer need to distinguish between even- and odd-length
palindromes—every palindrome is now centered on a single character, whether it’s a letter
or a # .

Achieve O(n) runtime

Now comes the real challenge: how do we achieve O(n) runtime?

Let's look at our second brute force algorithm. The good news is that we already have a single
outer loop, iterating through all possible centers. So, if we can reduce the inner palindrome
expansion to amortized O(1) per center, the entire algorithm will run in O(n) time.

This is where we borrow an idea similar to dynamic programming: instead of recomputing
everything from scratch, we store useful information from earlier computations and reuse it
when possible.

What kind of information can we store? Let’s examine an example:

What can we say about the length of the longest palindromic substring centered at two
characters marked by ^ ? They are the same! How do we know? Except for just counting
them, we can also tell this by the fact that they are at two symmetrical positions with respect
to the center ~ (which is b in the middle). If we already know that the entire region around ~
forms a palindrome, then:

The substring centered at the left ^ has a known radius.

The substring centered at the right ^ must have at least the same radius unless it hits
the boundary of the longer palindrome.

This observation leads to a key optimization:

If a center lies within a previously known palindrome, its mirrored counterpart
(with respect to the current center of the known palindrome) has already
computed useful information.

abba => #a#b#b#a#
abcdef => #a#b#c#d#e#f#

#a#b#c#b#c#b#a#
 ^ ~ ^

Therefore, instead of expanding every center from scratch, we can:

Maintain the rightmost boundary of any palindrome found so far and its corresponding
center.

Keep an array P to store the radius of the longest palindromic substring centered on
each character.

Use the mirror of the current character about the stored center to guess the radius (stored
in P).

Only expand further if the guessed radius reaches the boundary.

This is the core insight behind Manacher’s Algorithm, which leverages symmetry and
previously computed results to eliminate redundant computations and bring the runtime down
to O(n).

Manacher's Algorithm - Implementation

Implementation using python

Now let's dig into detailed implementation. First, insert # into the string:

We need to keep track of the following three values:

Next, we begin scanning the string to find the longest palindromic substring centered at each
character. Before expanding from a center to check for palindromes, we first try to leverage
previously computed information. Since we’ve already recorded palindromic spans up to
" right ", we can use this information to make an initial guess about the radius at the current
center.

new_s = '#' + "#".join(s) + '#'

p = [0] * n # p[i] will hold the radius of the longest palindrome
centered at i
center = 0 # The center of the palindrome that extends farthest to the
right (i.e. rightmost palindrome)
right = 0 # The right boundary of the palindrome centered at 'center'

for i in range(k):
 mirror = 2 * center - i # Mirror position of i around the current
center

 if i < right:

Next, we attempt to expand beyond the guessed radius to find the actual longest
palindrome centered at the current position—just like in the traditional center-expansion
approach. If this newly found palindrome extends past the current right boundary, we
update both center and right to reflect the new rightmost-reaching palindrome.

After getting the entire array p , you can extract either the length of the longest palindrome or
its position.

The detailed implementation using different programming languages, including Python, Java,
and C++, can be found in our bundled files.

Time/Space complexity analysis

As discussed earlier, the algorithm contains only a single outer loop, which iterates k times —
where k is the length of the preprocessed string with inserted # characters. Although this
transforms the original string of length n into one of length 2n + 1 , the overall complexity
remains O(n).

The only potentially non-constant operation inside the loop is the while loop used for

 # Use the mirror's result if it doesn't go beyond the right boundary
 # Length of the new palindrome should be at least the same as its
mirror
 p[i] = min(right - i, p[mirror])

for i in range(k):
 mirror = 2 * center - i
 if i < right:
 p[i] = min(right - i, p[mirror])

 # Attempt to expand the palindrome centered at i beyond guessed
raduis
 # Compare characters symmetrically around i as long as they
match
 while i + p[i] + 1 < n and i - p[i] - 1 >= 0 and t[i + p[i] + 1]
== t[i - p[i] - 1]:
 p[i] += 1

 # If the expanded palindrome goes beyond the current right
boundary,
 # update the center and right to reflect the new rightmost
palindrome
 if i + p[i] > right:
 center = i
 right = i + p[i]

expanding palindromes. However, this expansion only occurs when it extends the rightright
boundary of the currently known longest palindrome. Since right can only move forward—
from 0 to at most k —the total number of expansions across the entire algorithm is bounded
by k .

This means the expansion step has amortized O(1) time complexity per iteration, leading to a
total runtime of O(n).

For space complexity, the only thing that needs a lot of space is P (which stores longest
radius at each position) and new_s (the expanded string), and this costs O(n).

Programming Challenge

Problem idea - Maximum Valid DNA Helix

To encourage deeper learning and hands-on understanding, we challenge students to modify
Manacher's Algorithm to solve a broader class of problems involving symmetry.

Instead of finding the longest palindromic substring, we ask students to find the longest DNA
Helix—a substring that forms a valid double-stranded DNA structure. In this version,
characters no longer match by identity. Instead, valid pairings follow the biological base-pair
rules:

'A' pairs with 'T'

'C' pairs with 'G'

Idea for solution

This problem is almost identical to the classic longest palindromic substring problem!

The key difference is that instead of matching identical characters, we now want to match
each character with its corresponding pair. To handle this, we can define a mapping
dictionary that specifies valid character pairings.

But wait—is that really all? Is this problem that simple?

mapping_dict = {
 'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C', '#': '#',
}

def matches(c1, c2):
 return mapping_dict[c1] == c2

At first glance, it may seem like just a minor tweak to the original palindrome problem.
However, after implementing the naive solution and running it on several test cases, you may
start to notice some unexpected behavior.

Consider the following example:

When using Manacher's Algorithm, calculating the longest radius at a position i involves
looking at its mirror with respect to the current center .

Now, in the above example, the mirror position has a radius of 1. Intuitively, this suggests that
the position i should also have at least a radius of 1. However, in our modified problem, we
might find that the radius at i is actually 0—'C' and 'C' do not form a valid pair under our
custom mapping.

The problem arises because:

centercenter does not record enough information for itself.

What does this mean? First, look at our original palindrome case:

We see that center , r (The mapping of center by mirror), and l (The mapping of
center by i) must be the same.

But in our altered case, things are different:

We see that center matches r but does not match l . This means that our algorithm only
ensures that characters AROUND center matches, but NOT center itself.

So how do we fix this? Once we understand the source of the issue, the solution becomes
simple and intuitive! We just add one more check: check whether s[center] == s[i + (i -
center)] . If so, do things as usual. If not, this means that the longest radius at i is i -
center - 1 .

G G C C C
 ^ ^ ^
 mirror center i

1 2 1 2 1
^ ^ ^ ^ ^
r mirror center i l

G G C C C
^ ^ ^ ^ ^
r mirror center i l

Inspiration

At first glance, the problem we designed seemed deceptively simple—just a small twist on the
classic longest palindromic substring task. However, this illusion fades when the "magic" of
Manacher's Algorithm breaks down at the center under our modified matching rules.

This challenge highlights an important lesson: to adapt powerful algorithms like Manacher's to
new settings, one must have a deep understanding of their inner workings—not just how to
implement them, but why they work.

By confronting this breakdown, students gain valuable insights into:

The structural assumptions underlying Manacher’s Algorithm,

The importance of considering edge cases when applying what they learned before to
something similar,

How to generalize or repair an algorithm when its assumptions no longer hold.

This exercise also opens the door to applying Manacher’s approach to other symmetry-
based problems, teaching students not only where this algorithm shines, but also where and
why it needs modification.

Conclusion

Today, we explored Manacher's Algorithm—a remarkably powerful technique for finding the
longest palindromic substring in linear time. This algorithm opens the door to a new way of
thinking: a world that is symmetric, but not linear.

Manacher’s approach beautifully illustrates a fundamental principle in algorithm design:

Store useful information along the way, and use it wisely.

By analyzing a slightly altered version of the palindrome problem, we gained a deeper
understanding of how Manacher's Algorithm works, where its assumptions lie, and how it can
be modified to handle new challenges involving symmetry.

This experience shows not only the power of the algorithm itself, but also the importance of
understanding algorithms at a conceptual level—so that we can extend, adapt, and apply
them to a wider range of problems.

	Introduction / Problem Statement
	What's the problem?
	Some Naive Approaches
	Our Goal

	Manacher's Algorithm - Idea
	Detect both even- and odd-length palindromes
	Achieve O(n) runtime

	Manacher's Algorithm - Implementation
	Implementation using python
	Time/Space complexity analysis

	Programming Challenge
	Problem idea - Maximum Valid DNA Helix
	Idea for solution
	Inspiration

	Conclusion

