
Introduction / Problem Statement  

What's the problem?  

If you've spent time programming, you've likely encountered the concept of palindromes—
sequences that read the same forward and backward. While palindromes might seem like a 
trivial concept at first, they actually have meaningful applications in fields like bioinformatics, 
natural language processing (NLP), and data compression. Here are a few examples:

DNA/RNA Structures: In molecular biology, palindromic regions in DNA and RNA can fold 
into hairpin or stem-loop structures, which play key roles in gene regulation and function.

Pattern Recognition: In data compression, algorithms like LZ77 and LZ78 can exploit 
palindromic patterns to identify and compress repeated structures more effectively.

Error Correction: Some advanced encoding schemes use palindromic properties to 
enhance data integrity and support robust error detection.

Today’s problem is one of the most classic and elegant about palindromes: 

Find the longest palindromic substring in a given string (A substring refers to a 
contiguous sequence of characters within a string).

Some Naive Approaches  

To find the longest palindromic substring in a given string, the most naive approach uses two 
nested loops to generate all possible substrings and check each one:

This method has a time complexity of O(n³): one layer for the start index, one for the end 
index, and another for checking if the substring itself is a palindrome (which takes O(n) time). 
Clearly, this is inefficient and impractical for long strings (Like DNA/RNA sequences or massive 
data compression).

If we look more closely at the structure of palindromes, we realize that using start  and end  
to define substrings is not optimal. Palindromes are symmetric, so instead of scanning all 
possible substrings, we can iterate through each character and expand outward from it as a 
center:

for start in range(len(s)):
  for end in range(start + 1, len(s)):
    check_is_palindrome(s[start:end+1])

for i in range(len(s)):



This approach is more intuitive and avoids checking every substring, but it still has two 
major drawbacks:

Time complexity is still O(n²): In the worst case, each center may expand up to the 
entire string.

It only detects odd-length palindromes: since the center is assumed to be a single 
character. Even-length palindromes (like "abba" ) are ignored.

Our Goal  

To overcome these limitations, the algorithm we seek should:

Achieve a target runtime of O(n).

Be able to detect both even- and odd-length palindromes efficiently in any 
string.

Manacher's Algorithm - Idea  

Detect both even- and odd-length palindromes  

Let’s start solving the problem! 

Before we dive into optimizing performance, we’ll first address a foundational challenge: how 
to uniformly detect both odd- and even-length palindromes. 

Odd-length palindromes are naturally handled when we expand around a single character. The 
real difficulty lies in even-length palindromes. Intuitively, we can interpret these palindromes 
to have a center between characters. For example:

How can we formalize this idea?

We can treat the space between every pair of characters as a valid center by inserting a 
special character between each letter. This character should not interfere with the original 
string’s content—so instead of inserting an actual letter (which could create false matches), we 
typically use a non-alphabetic symbol like ## . For example:

  radius = 0
  while i - radius >= 0 and i + radius < len(s) and s[i - radius] == s[i 
+ radius]:
    radius += 1
  max_length = 2 * radius + 1

ab ba
  ^



After this transformation, we no longer need to distinguish between even- and odd-length 
palindromes—every palindrome is now centered on a single character, whether it’s a letter 
or a # .

Achieve O(n) runtime  

Now comes the real challenge: how do we achieve O(n) runtime?

Let's look at our second brute force algorithm. The good news is that we already have a single 
outer loop, iterating through all possible centers. So, if we can reduce the inner palindrome 
expansion to amortized O(1) per center, the entire algorithm will run in O(n) time.

This is where we borrow an idea similar to dynamic programming: instead of recomputing 
everything from scratch, we store useful information from earlier computations and reuse it 
when possible.

What kind of information can we store? Let’s examine an example:

What can we say about the length of the longest palindromic substring centered at two 
characters marked by ^ ? They are the same! How do we know? Except for just counting 
them, we can also tell this by the fact that they are at two symmetrical positions with respect 
to the center ~  (which is b  in the middle). If we already know that the entire region around ~  
forms a palindrome, then:

The substring centered at the left ^  has a known radius.

The substring centered at the right ^  must have at least the same radius unless it hits 
the boundary of the longer palindrome.

This observation leads to a key optimization:

If a center lies within a previously known palindrome, its mirrored counterpart 
(with respect to the current center of the known palindrome) has already 
computed useful information.

abba => #a#b#b#a#
abcdef => #a#b#c#d#e#f#

#a#b#c#b#c#b#a#
     ^ ~ ^



Therefore, instead of expanding every center from scratch, we can:

Maintain the rightmost boundary of any palindrome found so far and its corresponding 
center.

Keep an array P  to store the radius of the longest palindromic substring centered on 
each character.

Use the mirror of the current character about the stored center to guess the radius (stored 
in P ).

Only expand further if the guessed radius reaches the boundary.

This is the core insight behind Manacher’s Algorithm, which leverages symmetry and 
previously computed results to eliminate redundant computations and bring the runtime down 
to O(n).

Manacher's Algorithm - Implementation  

Implementation using python  

Now let's dig into detailed implementation. First, insert #  into the string:

We need to keep track of the following three values:

Next, we begin scanning the string to find the longest palindromic substring centered at each 
character. Before expanding from a center to check for palindromes, we first try to leverage 
previously computed information. Since we’ve already recorded palindromic spans up to 
" right ", we can use this information to make an initial guess about the radius at the current 
center. 

new_s = '#' + "#".join(s) + '#'

p = [0] * n  # p[i] will hold the radius of the longest palindrome 
centered at i
center = 0   # The center of the palindrome that extends farthest to the 
right (i.e. rightmost palindrome)
right = 0    # The right boundary of the palindrome centered at 'center'

for i in range(k):
  mirror = 2 * center - i  # Mirror position of i around the current 
center

  if i < right:



Next, we attempt to expand beyond the guessed radius to find the actual longest 
palindrome centered at the current position—just like in the traditional center-expansion 
approach. If this newly found palindrome extends past the current right  boundary, we 
update both center  and right  to reflect the new rightmost-reaching palindrome.

After getting the entire array p , you can extract either the length of the longest palindrome or 
its position. 

The detailed implementation using different programming languages, including Python, Java, 
and C++, can be found in our bundled files.

Time/Space complexity analysis  

As discussed earlier, the algorithm contains only a single outer loop, which iterates k  times — 
where k  is the length of the preprocessed string with inserted #  characters. Although this 
transforms the original string of length n  into one of length 2n + 1 , the overall complexity 
remains O(n).

The only potentially non-constant operation inside the loop is the while loop used for 

    # Use the mirror's result if it doesn't go beyond the right boundary
    # Length of the new palindrome should be at least the same as its 
mirror
    p[i] = min(right - i, p[mirror])

for i in range(k):
        mirror = 2 * center - i 
        if i < right:
            p[i] = min(right - i, p[mirror])

        # Attempt to expand the palindrome centered at i beyond guessed 
raduis
        # Compare characters symmetrically around i as long as they 
match
        while i + p[i] + 1 < n and i - p[i] - 1 >= 0 and t[i + p[i] + 1] 
== t[i - p[i] - 1]:
            p[i] += 1

        # If the expanded palindrome goes beyond the current right 
boundary,
        # update the center and right to reflect the new rightmost 
palindrome
        if i + p[i] > right:
            center = i
            right = i + p[i]



expanding palindromes. However, this expansion only occurs when it extends the rightright  
boundary of the currently known longest palindrome. Since right  can only move forward—
from 0  to at most k —the total number of expansions across the entire algorithm is bounded 
by k .

This means the expansion step has amortized O(1) time complexity per iteration, leading to a 
total runtime of O(n).

For space complexity, the only thing that needs a lot of space is P  (which stores longest 
radius at each position) and new_s  (the expanded string), and this costs O(n).

Programming Challenge  

Problem idea - Maximum Valid DNA Helix  

To encourage deeper learning and hands-on understanding, we challenge students to modify 
Manacher's Algorithm to solve a broader class of problems involving symmetry.

Instead of finding the longest palindromic substring, we ask students to find the longest DNA 
Helix—a substring that forms a valid double-stranded DNA structure. In this version, 
characters no longer match by identity. Instead, valid pairings follow the biological base-pair 
rules:

'A'  pairs with 'T'

'C'  pairs with 'G'

Idea for solution  

This problem is almost identical to the classic longest palindromic substring problem!

The key difference is that instead of matching identical characters, we now want to match 
each character with its corresponding pair. To handle this, we can define a mapping 
dictionary that specifies valid character pairings.

But wait—is that really all? Is this problem that simple?

mapping_dict = {
    'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C', '#': '#',
}

def matches(c1, c2):
  return mapping_dict[c1] == c2



At first glance, it may seem like just a minor tweak to the original palindrome problem. 
However, after implementing the naive solution and running it on several test cases, you may 
start to notice some unexpected behavior.

Consider the following example:

When using Manacher's Algorithm, calculating the longest radius at a position i  involves 
looking at its mirror  with respect to the current center . 

Now, in the above example, the mirror position has a radius of 1. Intuitively, this suggests that 
the position i  should also have at least a radius of 1. However, in our modified problem, we 
might find that the radius at i  is actually 0—'C' and 'C' do not form a valid pair under our 
custom mapping.

The problem arises because:

centercenter  does not record enough information for itself.

What does this mean? First, look at our original palindrome case:

We see that center , r  (The mapping of center  by mirror ), and l  (The mapping of 
center  by i ) must be the same.

But in our altered case, things are different:

We see that center  matches r  but does not match l . This means that our algorithm only 
ensures that characters AROUND center  matches, but NOT center  itself.

So how do we fix this? Once we understand the source of the issue, the solution becomes 
simple and intuitive! We just add one more check: check whether s[center] == s[i + (i - 
center)] . If so, do things as usual. If not, this means that the longest radius at i  is i - 
center - 1 .

G     G     C     C     C
      ^     ^     ^
   mirror center  i

1     2     1     2     1
^     ^     ^     ^     ^
r  mirror center  i     l

G     G     C     C     C
^     ^     ^     ^     ^
r  mirror center  i     l



Inspiration  

At first glance, the problem we designed seemed deceptively simple—just a small twist on the 
classic longest palindromic substring task. However, this illusion fades when the "magic" of 
Manacher's Algorithm breaks down at the center  under our modified matching rules.

This challenge highlights an important lesson: to adapt powerful algorithms like Manacher's to 
new settings, one must have a deep understanding of their inner workings—not just how to 
implement them, but why they work.

By confronting this breakdown, students gain valuable insights into:

The structural assumptions underlying Manacher’s Algorithm,

The importance of considering edge cases when applying what they learned before to 
something similar,

How to generalize or repair an algorithm when its assumptions no longer hold.

This exercise also opens the door to applying Manacher’s approach to other symmetry-
based problems, teaching students not only where this algorithm shines, but also where and 
why it needs modification.

Conclusion  

Today, we explored Manacher's Algorithm—a remarkably powerful technique for finding the 
longest palindromic substring in linear time. This algorithm opens the door to a new way of 
thinking: a world that is symmetric, but not linear.

Manacher’s approach beautifully illustrates a fundamental principle in algorithm design:  

Store useful information along the way, and use it wisely.

By analyzing a slightly altered version of the palindrome problem, we gained a deeper 
understanding of how Manacher's Algorithm works, where its assumptions lie, and how it can 
be modified to handle new challenges involving symmetry.

This experience shows not only the power of the algorithm itself, but also the importance of 
understanding algorithms at a conceptual level—so that we can extend, adapt, and apply 
them to a wider range of problems.
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