
TimSort Executive Summary
Aidan Tan, Sarah Warren, Philip Yao

Introduction/ Problem Statement:

Efficient sorting has a wide range of applications in computer science. Traditional sorting
algorithms like Merge Sort or Quick Sort assume that the input is completely unordered. Timsort
is a hybrid sorting algorithm designed to solve the general problem of sorting data efficiently, but
is optimized for patterns commonly found in real-world data. Naturally occurring data often
contains partially sorted segments, or “runs,” and strictly decreasing segments. This leads to
them doing unnecessary work, resulting in suboptimal performance. Timsort has a runtime of
O(nlogn) in the average and worst case, and an optimal O(n) time complexity when the input is
already sorted or nearly sorted. Timsort is also a stable sorting algorithm, meaning that elements
with equal value remain in the same order as their input. TimSort was introduced by Tim Peters
in 2002 and is now the default sorting algorithm in Python and Java.

Overall Intuitive Approach / Solution:

Timsort combines Insertion Sort, which is fast on small and partially ordered inputs, and uses the
strategy used in Merge Sort to combine those runs. It also looks for strictly decreasing segments
of data and reverses them. When merging runs together, the algorithm uses a stack to ensure that
merging is balanced. Galloping mode is another optimization technique that is triggered when
one run keeps winning merge comparisons. In this case there is an exponential or binary search
to find the next element, and the algorithm will copy a section of the run into the merged list to
avoid one-by-one comparisons and merges when unnecessary. A dataset of daily stock prices is a
good example of data that Timsort is designed to be very fast at handling. The prices change
gradually and follow patterns, so the list will already be partially sorted and have decreasing runs
that the algorithm will detect and reverse.

Implementation:

Timsort works in three stages. It first determines the minimum size of the run, separates the data
into runs, and merges them. As an adaptive sorting algorithm, Timsort determines some variables
based on its input. MinRun, which is the size of the runs that the algorithm initially splits into, is
determined by the size of the input. The size divided by the minimum run should be equal to or
slightly less than a power of two so that the merging is as stable as possible. The minimum run is
between 32 and 64, inclusive.

1
2
3
4
5
6

def calculate_min_run(n):
 r = 0
 while n >= 64:
 r = r | (n & 1)
 n = n >> 1
 return n + r

The function for MinRun takes the size of the input, n, and instantiates an offset variable, r = 0.
While n is greater than or equal to 64, which is the maximum run size, r = r | (n & 1). The next
operation is n >> 1, which effectively divides n by two and rounds down to the nearest even
number. The final value of minRun is the sum of n and r. This method ensures that the minimum
size of the runs is as close to or equal to a power of 2. This makes merging efficient because each
merge reduces the problem by 2.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

def timsort(arr):
 n = len(arr)
 min_run = calculate_min_run(n)
 run_stack = []

 i = 0
 while i < n:
 run_end = min(i + min_run - 1, n - 1)
 insertion_sort(arr, i, run_end)
 run_stack.append((i, run_end))
 i = run_end + 1

 merge_collapse(arr, run_stack)

 while len(run_stack) > 1:
 merge_at(arr, run_stack, len(run_stack) - 2)

Once MinRun is determined, the algorithm passes through the data to split it into 𝑠𝑖𝑧𝑒(𝑑𝑎𝑡𝑎)

𝑀𝑖𝑛𝑅𝑢𝑛

number of runs. The data is split with one pass through the list. If the run is slightly increasing
and the next element is decreasing, Insertion sort is used to sort this element in its place within
the run. If the current run is strictly decreasing, and the next element increases, the algorithm
reverses the current run so that it is now increasing, and then uses Insertion sort to insert the next
element. Insertion sort works best on smaller and partially ordered inputs. If any runs are strictly
decreasing, it reverses these segments. At the end of the pass through the list, the input has
separated into sorted chunks.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

def insertion_sort(arr, left, right):
 if left < right and arr[left] > arr[left+1]:
 is_desc = True
 for k in range(left, right):
 if arr[k] < arr[k+1]:
 is_desc = False
 break
 if is_desc:
 i, j = left, right
 while i < j:
 arr[i], arr[j] = arr[j], arr[i]
 i += 1
 j -= 1
 return
 for i in range(left + 1, right + 1):
 temp = arr[i]
 j = i - 1
 while j >= left and arr[j] > temp:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = temp

The next step is to use balanced merging to combine the runs efficiently. The algorithm stores the
runs on a stack, and the merge policy involves runs X, Y, and Z (X at the top). It maintains the
rule that |Z| > |Y| + |X|, and |Y| > |X|. This means that the run furthest to the top of the stack, Z,
should be greater than its successor, Y, which should be greater than the size of the run on the top
of the stack. If |X| + |Y| ≥ |Z| , runs X and Y are popped off the stack, merged using Merge sort,
and put back on the stack.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

def merge_collapse(arr, run_stack):
 while len(run_stack) > 2:
 X = run_stack[-3]
 Y = run_stack[-2]
 Z = run_stack[-1]
 lenX = X[1] - X[0] + 1
 lenY = Y[1] - Y[0] + 1
 lenZ = Z[1] - Z[0] + 1

 if lenX <= lenY + lenZ or lenY <= lenZ:
 if lenX < lenC:
 merge_at(arr, run_stack, len(run_stack) - 3)
 else:
 merge_at(arr, run_stack, len(run_stack) - 2)
 else:

“Galloping mode” is an optimization that speeds up merging when two runs have very different
values. If the elements compared in run A are greater than those in run B more than MinGallop
times, this optimization is triggered. It works by binary or exponentially searching run B for the
next element that exceeds A’s current winner. When this element is found, the chunk of elements
is copied and merged into place. This optimization cuts down on comparisons when one list is
much greater than another, which can be a common occurrence in the target datasets.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

 break

 if len(run_stack) == 2 and (run_stack[-2][1] - run_stack[-2][0] + 1) <=
(run_stack[-1][1] - run_stack[-1][0] + 1):
 merge_at(arr, run_stack, len(run_stack) - 2)

def merge_at(arr, run_stack, i):
 start1, end1 = run_stack[i]
 start2, end2 = run_stack[i + 1]

 merge(arr, start1, end1, end2)
 run_stack[i] = (start1, end2)
 del run_stack[i + 1]

def merge(arr, left, mid, right):
 left_part = arr[left:mid + 1]
 right_part = arr[mid + 1:right + 1]
 i = j = 0
 k = left
 while i < len(left_part) and j < len(right_part):
 if left_part[i] <= right_part[j]:
 arr[k] = left_part[i]
 i += 1
 else:
 arr[k] = right_part[j]
 j += 1
 k += 1
 while i < len(left_part):
 arr[k] = left_part[i]
 i += 1
 k += 1
 while j < len(right_part):
 arr[k] = right_part[j]
 j += 1
 k += 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14

def gallop(x, arr, start):
 hi = 1
 n = len(arr)
 while start + hi < n and x > arr[start + hi]:
 hi *= 2
 lo = hi // 2
 hi = min(start + hi, n)
 while lo < hi:
 mid = (lo + hi) // 2
 if x > arr[mid]:
 lo = mid + 1
 else:
 hi = mid
 return lo

Summary of Programming Challenge:

The programming challenge describes a lighthouse that determines the docking order of ships at
sea. Its beam rotates counterclockwise, identifies ships based on their position, visibility, and
proximity to the lighthouse’s center at (0,0). The beam has constraints on the number of ships it
can process at one time, simulating Timsort’s structure of sorting smaller segments of its input,
or runs. Furthermore, the beam has a set radius meaning only certain ships will be visible and
able to dock. The aim of this challenge is to provide an environment where Timsort would be
most efficient while modifying it with the twist of a graph and coordinate based angle
comparator. This programming challenge meets those learning objectives by adding certain
constraints to the solution so that it necessitates Timsort - for example, the number of ships able
to be processed at one time naturally fits into Timsort’s idea of “runs.” An autograder configured
for this challenge would have strict time constraints to ensure the algorithm includes the
optimizations that make Timsort fast.

Key Ideas for Solving Programming Challenge:

The main points to consider when approaching the programming challenge are: Timsort’s runs,
angle comparison constraints, and stable sorting.

When solving the problem, the first key idea is the predefined run size. The input specifies how
many ships the lighthouse can process at a time which can be interpreted as MinRun size,
intuitively aligning with how Timsort organizes data into manageable chunks. This ensures the
solution addresses Timsort’s strength in partially ordered segments. If not adhered to, depending
on the size of the dataset, it may become inefficient e.g. if MinRun is hardcoded to 64 but the
input size is smaller, the algorithm may default to insertion sort which can be less efficient than
Timsort. There are a number of test cases with sizes ranging from less than 10 ships to 1,000,000

ships in varying orders which requires the algorithm to use well defined run sizes to efficiently
sort the data.

The second key idea is the polar angle comparator. Ships are sorted not by value alone but by
their polar angle relative to the lighthouse's center at (0, 0), requiring careful handling of edge
cases like overlapping angles. This geometric ordering makes the sorting nontraditional, adding a
layer of complexity which must be addressed. There are a number of edge cases in the tests
which require a robust angle comparator such as case 2 which addresses identical angles in
which each ship is along the line x=y and case 6 and 7 in which ships are sorted in forward and
reverse polar order respectively.

The last key idea is stable sorting. In cases where multiple ships occupy the same coordinates or
angular direction, their original input order must be preserved as specified by the programming
problem. This maps directly to Timsort’s design as a stable sorting algorithm. This is addressed
in test cases 8 and 9 which place ships along x=0 and y=0 respectively meaning that all ships are
on the same angle and order must be preserved.

An additional challenge is optimizing the code to pass with certain time constraints in the
autograder. The tests are set up with many worst case scenarios and to pass all tests, the
implementation must correctly and efficiently trigger run reversal, galloping mode, and other key
Timsort optimizations. These challenges all provide interesting twists, which when initially
presented with may be confusing, but come with sleek and intuitive solutions once discovered.
They are possible to self derive and the programming problem itself gives a number of pointers
in terms of direction. The expected complexity of a correct implementation is consistent with
Timsort’s complexity of O(n log n) in the general case, and O(n) in best-case scenarios where
ships are pre-sorted.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

simple test case - programming challenge example
edge case - every ship along y = x
edge case - every ship along fixed radius
edge case - duplicate ship coordinates
edge case - no ships in query
edge case - 20 ships provided in sorted polar order
edge case - 20 ships provided in reverse polar order
edge case - 20 ships along x = 0
edge case - 20 ships along y = 0
runtime: 1,000 random ships and 10 queries
runtime: 5,000 random ships and 10 queries
runtime: 10,000 random ships and 10 queries
runtime: 50,000 random ships and 10 queries
runtime: 150,000 sorted ships and 10 queries
runtime: 150,000 reverse sorted ships and 10 queries

16
17
18
19
20

runtime: 150,000 random ships and 10 queries
runtime: 150,000 sorted ships with 150,000 reverse sorted ships and 10 queries
runtime: 300,000 sorted ships and 10 queries
runtime: 300,000 reverse sorted ships and 10 queries
runtime: 300,000 random ships and 10 queries

Conclusion:

Timsort uses a variety of strategies from other sorting algorithms, mainly Insertion and Merge
sorts, to make it adaptable to its input and efficient on real world data. Variables like MinRun and
MinGallop that are determined based on each unique dataset make this algorithm adaptable and
able to be very efficient no matter its input. Timsort’s adaptability and stability make it ideal for
use in many programming languages’ sorting libraries, like Java and Python.

References:

https://www.kirupa.com/sorts/timsort.htm
https://www.youtube.com/watch?v=0Dg41UEK3Io
https://github.com/kirupa/kirupa/blob/master/data_structures_algorithms/timsort.htm
https://www.chrislaux.com/timsort

https://www.kirupa.com/sorts/timsort.htm
https://www.youtube.com/watch?v=0Dg41UEK3Io
https://github.com/kirupa/kirupa/blob/master/data_structures_algorithms/timsort.htm
https://www.chrislaux.com/timsort

	TimSort Executive Summary
	Introduction/ Problem Statement:
	Overall Intuitive Approach / Solution:
	Implementation:
	Summary of Programming Challenge:
	Key Ideas for Solving Programming Challenge:
	Conclusion:
	References:

