
Primality Tests

Janice Guo (vdq8tp), Edward Wei (nyw6dh), Jonathan Le (pqq2hu)

April 21, 2025

1 Introduction

In this project, we present a class of algorithms for verifying primes. Such algorithms are fundamental
to modern cryptography because they exemplify the concept of ”one-way functions”, which are opera-
tions that are computationally easy to verify but difficult to reverse. Prime numbers serve as a crucial
backbone to cryptographic systems because verification is efficient; given a large number, we can verify
its primality relatively quickly using probabilistic or deterministic tests that run in polynomial time.
Conversely, given a large composite number (especially the product of two large primes), finding its
prime factors is computationally intensive.

This asymmetry between verification and computation creates a ”trapdoor” function. This fundamen-
tal asymmetry enables many cryptographic protocols, including RSA encryption, where the security
relies on the practical impossibility of factoring very large semiprime numbers, while verification re-
mains tractable. Our algorithms explore this verification process, providing efficient methods to de-
termine primality with mathematical certainty – a critical first step in building secure cryptographic
systems that leverage the inherent computational hardness of the related factorization problem.

In the following sections, we present our methods for implementation and teaching methods for assisting
undergraduate students to understand and build tools necessary for finding primes. We elaborate com-
prehensively on inner workings of each algorithm generating primes and then propose a programming
challenge related to modern cryptocurrency applications designed to help students apply primality
tests to practical scenarios.

2 Approach

The first intuitive approach is simply just to try and divide the number in question, n, by all integers
less than it, excluding 1. This approach will always return the correct answer because it checks every
single possible factor, but becomes too slow when n is large. Thus, we turn to Fermat’s Little Theorem,
which states that for some prime number n and a co-prime integer a, then an−1 ≡ 1 mod n must hold
true.

Fermat’s Little Theorem allows us to mathematically determine whether a number is prime or not
without trying to divide n by every single valid divisor. While Fermat’s Little Theorem generally does
not hold for composite numbers, there are situations where n may pass the theorem if a is co-prime
to n. Thus, the idea is to repeat this equality check with different random values of a. If we cannot
find an a that does not satisfy the equality after several iterations, we can then conclude that n has a
high probability of being prime.

To extend Fermat’s Little Theorem, we know that a prime number must be odd. Thus, n− 1 is even,
and can be factorized and represented as 2s · d. From this, we can factorize Fermat’s Little theorem
as follows:

1



an−1 ≡ 1 mod n ⇐⇒ a2
s·d − 1 ≡ 0 mod n

⇐⇒ (a2
s−1·d + 1)(a2

s−1·d − 1) ≡ 0 mod n

⇐⇒ (a2
s−1·d + 1)(a2

s−2·d + 1)(a2
s−2·d − 1) ≡ 0 mod n

...

⇐⇒ (a2
s−1·d + 1)(a2

s−2·d + 1) · · · (ad + 1)(ad − 1) ≡ 0 mod n

In order to satisfy the equality, one of the expressions in the parentheses must equal 0, so either
ad ≡ 1 mod n or a2

r·d ≡ −1 mod n must hold true for some value 0 ≤ r ≤ s − 1. While these
equalities are stricter than the original Fermat inequality, there still exists a chance that a composite
number will satisfy these with the right a, so we must again perform several iterations to conclude
whether n is a composite or a strong probable prime. This method is described as the Miller-Rabin
test.

3 Implementation

3.1 Trial Division

Implementing naive trial division is trivially straight forward as follows:

isPrime(n):

for i = 2 ... n:

if n is divisible by i:

return false

return true

This approach can be optimized by stopping at the largest integer less than or equal to
√
n, since if d

is a divisor of n, either d ≤
√
n or n/d ≤

√
n. Additionally, if a number is not divisible by 2, then it

is not divisible by any other even number [fCP25]. Thus, we have as follows:

isPrime(n):

if n is divisible by 2:

return false

i = 3

while i <= sqrt(n):

if n is divisible by i:

return false

i += 2

return true

3.2 Fermat’s Test

Theoretically, implementing Fermat’s test is relatively straight forward as follows:

fermatPrime(n):

for a = 2 ... n-2:

if pow(a, n - 1) % n != 1:

return false

return true

However, checking all values for a is actually much slower than trial division, so we simply just run
Fermat’s test k times, each with some randomly chosen a to get a probably prime number test. Addi-
tionally, we can manually check some small primes. Finally, we optimize using binary exponentiation,
instead of multiplying the base some number of times in a row [fCP23]. Binary exponentiation takes
advantage of the fact that ax+y = ax · ay and a2x = ax · ax = (ax)2. Thus, we can vastly improve

2



runtime when calculating ab if we simply multiply the powers a1, a2, a4, · · · for each power that exists
in the binary representation of b. These powers are very easy to compute, since their values are simply
the square of the previous power. For example:

313 = 311012

= 310002 · 31002 · 312

= 38 · 34 · 3

Since the modulo operator does not affect multiplication, we can add a modulus at every step in the
binary exponentiation. Thus, we have an optimized implementation as follows:

binpowmod(a, b, m):

result = 1

while b > 0:

a = a % m

if binary b ends in 1:

result = result * a % m

raise a to the next power of 2

bitshift b right by 1

return result

probablyFermatPrime(n, k):

if n < 4:

if n equals 2 or 3, return true

else return false

for i = 1 ... k:

choose random number in range [2, n - 2] for base a

if binpowmod(a, n - 1, n) != 1:

return false

return true

3.3 Miller-Rabin Test

The factorized extension of Fermat’s Little Theorem is called the Miller-Rabin test, which is theoreti-
cally implemented with a helper function as follows:

isComposite(a, n, d, s):

num = a^(n - 1) % n

if num == 1 or num == n - 1:

return false

for r = 1 ... s - 1:

num = num * num % n

if num == n - 1:

return false

return true

millerRabinPrime(n):

s = 0

d = n - 1

while d is even:

divide d by 2

s++

for a = 2 ... n-2:

if isComposite(a, n, d, s):

return false

return true

3



Again, checking all values for a is extremely slow, so we simply just run the Miller-Rabin test k
times, each with some randomly chosen a to get another probably prime number test. Additionally,
we can manually check some small primes and some small prime divisors, along with using binary
exponentiation. Thus, we have an optimized implementation as follows:

isComposite(a, n, d, s):

num = binpowmod(a, d, n)

if num == 1 or num == n - 1:

return false

for r = 1 ... s - 1:

num = num * num % n

if num == n - 1:

return false

return true

probablyMillerRabinPrime(n, k):

if n < 4:

if n equals 2 or 3, return true

else return false

if n is even or divisible by 3:

return false

s = 0

d = n - 1

while d is even:

divide d by 2

s++

for i = 1 ... k:

choose random number in range [2, n - 2] for base a

if isComposite(a, n, d, s):

return false

return true

It has actually been proven that only a specific list of primes need to be used as base values to check
for primality [fCP24]. For testing a 32-bit integer, it is only necessary to test the first four prime bases,
and for a 64-bit integer only the first 12 prime bases. Assuming that n is a 64-bit integer or smaller,
we can have the following deterministic implementation instead of trying random values for a:

deterministicMillerRabinPrime(n):

if n < 2:

return false

s = 0

d = n - 1

while d is even:

divide d by 2

s++

for a = the next prime value in the first 12 primes:

if n == a:

return true

if isComposite(a, n, d, s):

return false

return true

4 Programming Challenge

For our programming challenge, we demonstrate a common application of prime verification in cryp-
tocurrency. The students are tasked with verifying transactions on a simplified blockchain that simply
appends transactions to a chain (of text), where transactions are approved only when the resulting

4



chain hashes to a prime number. This is a common principle behind proof-of-work blockchains, where
the “miner” submits a nonce that can be easily computationally verified as “correct” (a prime hash
in our case), but must have utilized some significant computational work to produce such an outcome
(the “proof-of-work”).

The key twists are that students must implement the hashing mechanism to convert the chain to a
number, perform prime validation very rapidly (a naive approach will not survive the rapidly growing
hash sizes), and track the valid transactions to be applied in downstream transactions. The hashing
algorithm is a simple XOR-based hash modified to produce odd numbers, while transactions can be
tracked with some string addition.

5 Key Solution Ideas

The primary idea of the programming challenge is to utilize the fastest approach for prime verification.
The naive solution will most fail test cases due to time constraints, growing rapidly. Methods based
on Fermat’s Little Theorem will fail in test cases that generate Carmichael numbers. The intended
solution is to utilize the Miller-Rabin test, either doing a probabilistic search (with reasonable iterations
to guarantee success, about 10-20), or use a set of deterministic bases (while the first 12 will only
guarantee verification for a 64 bit number, the test cases generate up to 128 bit numbers. The first 13
primes will guarantee verification up to 3,317,044,064,679,887,385,961,981).

6 Conclusion

In this project, we have presented a comprehensive overview of primality testing algorithms, ranging
from the straightforward trial division to the more sophisticated probabilistic methods like Fermat’s
test and the Miller-Rabin test. These algorithms form a critical foundation for modern cryptographic
systems by leveraging the fundamental asymmetry between verification and factorization – the very
essence of one-way functions that cryptography relies upon.

Our implementation section demonstrated the progression from naive approaches to optimized algo-
rithms, providing clear pseudocode examples that undergraduate students can readily understand and
implement. By incorporating techniques such as binary exponentiation, we have shown how mathe-
matical insights can dramatically improve algorithmic efficiency.

While both the Fermat and Miller-Rabin tests are probabilistic in nature, it is worth noting that their
failure rate is remarkably low. The Fermat test does have a non-trivial set of numbers known as
Carmichael numbers that will consistently pass despite being composite. However, the Miller-Rabin
test does not suffer from this particular weakness. In practice, the probability of a composite num-
ber passing the Miller-Rabin test with k random bases is at most 4−k, making it effectively correct
for cryptographic applications, due to geometrically decreasing probability with respect to number of
random bases.

Through our programming challenge and teaching methods, we have provided undergraduate students
with the tools necessary to not only understand these algorithms theoretically but also implement them
in practical scenarios related to modern cryptocurrency applications. This approach bridges the gap
between abstract mathematical concepts and real-world applications, fostering a deeper appreciation
for the role of prime numbers in securing digital communications.

References

[fCP23] Algorithms for Competitive Programming. Binary exponentiation, 2023.

[fCP24] Algorithms for Competitive-Programming. Primality tests, Apr 2024.

[fCP25] Algorithms for Competitive Programming. Integer factorization, 2025.

5


	Introduction
	Approach
	Implementation
	Trial Division
	Fermat's Test
	Miller-Rabin Test

	Programming Challenge
	Key Solution Ideas
	Conclusion

