
Cows

You have inherited quite a large piece of land, and upon observing it closely
you realize that it is full of cows (and there are A LOT of them). After
reflecting, you realize the cows are quite valuable and you would like to
ensure they do not wander off. Luckily, the large field of land is also full
of fence posts that can be used to build fences (no fence yet, but a bunch
of random fence posts are scattered around). You consider whether or not
you want to build a huge fence around the entire piece of land to keep the
cows inside but that seems really expensive. Maybe there is a way to build
a bunch of smaller fences to enclose all of the cows on your new piece of
land?

Write a program that, given the 2D location of each cow and each fence post, answers queries of the
following form: Given a rectangular area of the land R = (p1, p2) (upper left corner, lower right corner), if
you take all the fence posts completed contained in the area R and build a fence (straight lines between
the posts), how many of the cows in region R would be enclosed in the fence and how many cows would
not be enclosed in the fence?

In addition, cows sometimes walk around the land and change their position, so your code needs to
support cows changing locations. The data stream that you have access to will let you know the new
position of any cow that has changed.

Input

The first line of input is a number 5 ≤ n ≤ 20. Your land stretches on the euclidean plain from −2n to 2n

on both axes. All future points (cows and posts) will fall within this range.

The next line of input gives C ≤ 5 ∗ 105, the number of cows, and P ≤ 5 ∗ 105, the number of posts.
The next C lines will give the x, y position of each cow and the following P lines will give the x, y locations
of each post. For simplicity, all locations of cows and posts will be integers and no two cows and/or posts
will be in the exact same location. It IS possible that cows and/or posts will be collinear, so keep that in
mind. In addition, the points are guaranteed to be roughly uniformly distributed around the space (e.g.,
we won’t put everything into one corner of the space).

The following line will contain the number Q ≤ 5 ∗ 104, the number of queries / updates that will be
requested on the data. Each of the next Q lines will be in one of the following two formats:

• The letter Q (for query) followed by the x,y position of the upper-left corner of the range of interest,
followed by the x,y position of the lower-right corner of the range of interest. These coordinates will
always be integers. The sum of the total number of points that fall within these queries, over all
queries, will not exceed 5 ∗ 108.

• The letter M (for move) followed by an integer i < C, the index of the cow that has move. After
this, you will be given the new x,y location of cow i.

1



Output

For each query, output the number of cows that are inside the given area AND inside the largest fence that
can be built with the posts inside that area. After this, print the number of cows that are inside this area
AND are NOT inside the largest fence that can be built with posts inside that area. If a cow falls directly
on the fence line (consider how you are going to check this), then the cow is considered to be ”inside” the
fence. Likewise, if a cow or post fall directly on the border of the query area, then they are considered to
be inside the query area.

Languages

We have written a python and java solution this time. Our python solution does not meet the time
constraints so we are unsure if it is possible without significant optimizations. We highly recommend you
use Java or C++ for this assignment.

Sample Input

10

3 5

2 1

4 1

5 2

1 0

4 0

6 2

4 5

1 5

4

Q 1 5 5 0

Q 1 5 6 0

M 2 2 2

Q 1 5 5 0

Sample Output

2 1
3 0
3 0

2


