
Business Flow

You own a toy shop that has been very successful. Part of your business
model is that you have a factory that produces all of the toys for your
shop, and a warehouse which stores the toys temporarily until they are
ready to ship out to customers or retailers. You also already have a nice
network of trucks, vans, etc. which are used to transport your toys from
the factory to the warehouse on a regular basis.

In expanding your operation though, you have made a possibly con-
cerning decision. Instead of expanding into selling more toys, you have
decided to expand into entirely new product lines (e.g., soda, video games,
sports equipment, etc.) and you cannot manufacture these new items at
the same factory. In fact, each new line of business you are purchasing has its own factory that produces
the products, and its own warehouse where those products will be stored. You also do not want to purchase
anymore trucks, etc. if you can avoid it. Thus, you want to figure out if there is a way to support the
transport of the new product factories to the respective warehouses with the transport capacity that you
already have.

Write a program that, given the product factories and their respective warehouses, the capacity of trans-
porting products throughout your network, and the desired amount of each product to move, determines
whether or not it is possible to move every product from its factory to its warehouse.

Your transportation network will be modeled as a directed graph G = (V,E). Each node in G will
either be a product’s (possibly many) factory, a product’s (possibly many) warehouse, or an intersection
node. Intersection nodes are places where trucks can meet up and rearrange the products that are being
held in each truck. For example, you might drive two trucks to an intersection node, where a third truck
is waiting. Then you might spread the products out among all three trucks and send them each on a
different path from there. Each edge in your graph will have a capacity (the amount of product that can
be moved along that edge). To model this, each edge e = (u, v) ∈ E contains a total capacity c(u, v) ≥ 0.
Your network does not have any anti-parallel edges (i.e., e = (u, v) ∈ E → e′ = (v, u) /∈ E). Your business
is comprised of p different products P1, P2, ..., Pp. Each product has a unique factory, warehouse, and
demand. More formally, for each product i you have Pi = (fi, wi, di) | fi, wi ∈ V, di ∈ N (fi is the node of
the graph that is the factory for product i, wi is the node that is the warehouse for product i, and di is
the demand, how much product to move from factory to warehouse, for product i). You must also follow
the following constraints:

• For each product i, the total we define the variable fiuv to be the total amount of product i that is
being moved from node u to node v.

• The aggregate flow from node u to node v is fuv =
∑p

i=1 fiuv. In other words, the aggregate flow is
the sum of all of the products that are flowing along one particular edge.

• The aggregate flow must be less than or equal to the capacity of each edge: ∀u,vfuv ≤ c(u, v).

• All flows fiuv ≥ 0 (you can’t push negative product through an edge)

• The aggregate flow going into a node must exactly equal the aggregate flow coming out of that node
(conservation of flow). An exception occurs when a node is a factory or warehouse. In this case, the
aggregate flow all other products (for which this node is not a factory or warehouse) must be the
same incoming as outgoing.

1



• A network is feasible if there is a solution such that each product moves its demand exactly from
each respective factory to each respective warehouse.

In solving this problem, we would like you to formulate the problem as a Linear Program. Keep the
following in mind as you work to do so:

• You are not expected to implement a linear programming algorithm from scratch yourself. Research
different algorithms for linear programming. Find library calls that solve linear programs in your lan-
guage of interest. For this assignment only, you may ask generative AI to generate an implementation
of a linear programming solver (ONLY for that component of the assignment).

• Spend time formulating this problem as a linear program. How will you pass the input into the linear
programming algorithms you chose above? What form does the input need to take? Notice that the
objective function here is actually nothing (we are just looking for any feasible solution). So...what
can you set your objective function to to model this aspect of the problem?

• Note that all inputs to this problem will be integers (edge capacities, demands, etc.) but the solution
(actual flow values) can be any real number. The company has determined that if your code produces
a non-integer solution, they will review that by hand and decide what to do in a separate meeting.

Some notes on language, LP libraries, and efficiency

We recommend using Python for this assignment. This is primarily because the SciPy library is pre-
configured on Gradescope (tested and working) and contains a linear programming subroutine you can
use. We have a working solution in Python as well.

Regarding efficiency, this is not the primary focus of this assignment, so the time limit on the autograder
is very generous and you should not need to worry about meeting the time limit if you have a correct working
solution (unless you have an egregious inefficiency in your code).

If you use other tools for your linear programming implementation, consider the following:

1. If you need another Python module installed (via Pip install), you need to contact Floryan and he
can configure the autograder so that it contains your module.

2. If your linear programming algorithm is contained within a Java jar file (or multiple ones), you should
upload the jar as part of your solution and make sure your Makefile uses the -cp flag to build with
the jar files.

3. If you use your own implementation (or one generated by AI), then you should just upload this
implementation as part of your source code.

4. If you library is difficult to include or configure, then we reserve the right to reject your request and
ask you to use another approach.

A note on grading

For this assignment, it is required that you use linear programming to solve the assignment instead of a
custom algorithm you design yourself. The autograder will award up to 10 points for passing the test cases

2



as usual. However, the TAs and I will also be awarding 10 points for using Linear Programming as intended
(we will look at your code to ensure this). If you do not use Linear Programming for this assignment, then
your max grade is a 50 percent.

Input

The first line of input will contain the number of nodes in the network v ≤ 100 (implicitly indexed from 0
to n− 1), the number of edges in the network e ≤ 5000, and the number of products p ≤ 40.

The next p lines will each contain the values fi, wi, and di (the index of the factory node, warehouse
node, and demand of product i respectively). Note that 0 ≤ fi, wi ≤ n − 1 and di ∈ N. Note that it is
possible for multiple products to share the same factory or warehouse (or both), though it is also possible
that they are all unique.

The next e lines will each contain the start index, end index, and capacity of an edge. Note that for
all capacities, c(u, v) ∈ N.

Output

Simply output the string ”Yes” if it is possible to meet the demand of every product exactly without
violating any other constraints of the problem. Output ”No” if it is not possible to satisfy the demand of
all products.

Sample Input

6 5 2

0 4 2

1 5 2

0 2 2

1 2 2

2 3 4

3 4 2

3 5 2

Sample Output

Yes

3


